C型肝炎治療ガイドライン

（第5版）

2016年5月

日本肝臓学会
肝炎診療ガイドライン作成委員会 編
日本肝臓学会肝炎診療ガイドライン作成委員会（五十音順）
朝比奈靖浩 東京医科歯科大学消化器内科・大学院肝臓病態制御学
安藤 亮一 武蔵野赤十字病院腎臓内科 （日本透析医学会より推薦）
池上 徹 九州大学消化器・総合外科
泉 並木 武蔵野赤十字病院消化器科
菊地 慎 下落合クリニック腎臓内科 （日本透析医学会より推薦）
熊田 博光 虎の門病院肝臓センター
黒崎 雅之 武蔵野赤十字病院消化器科
**小池 和彦 東京大学大学院医学系研究科消化器内科
鈴木 文孝 虎の門病院肝臓センター
*滝川 一 帝京大学医学部内科
田中 篤 帝京大学医学部内科
田中 譲司 信州大学医学部内科学講座2
田中 靖人 名古屋市立大学大学院医学研究科病態医科学（ウイルス学）・肝疾患センター
坪内 博仁 鹿児島市立病院
林 紀夫 関西労災病院
平松 直樹 大阪労災病院
四柳 宏 東京大学大学院医学系研究科生体防御感染症学
* 委員長 ** 特別委員

Corresponding author: 田中 篤
〒173-8605 東京都板橋区加賀2－11－1 帝京大学医学部内科
Tel 03(3964)1211
Fax 03(3964)6627
Email a-tanaka@med.teikyo-u.ac.jp
改訂履歴（今回の改訂箇所は青字で記載）

2012年5月 第1版

2013年8月 第1.1版
● ALTの単位をU/lに修正
● テラプレビル＋Peg-IFNα-2b＋リバビリン3剤併用療法の市販後の成績を追加
● これに伴い1型高ウイルス症例に対しての推奨・治療フローチャートを変更
● Peg-IFN(IFN)少量長期投与についての記載を変更
● 文献リストをアップデート

2013年11月 第2版
● シメプレビル＋Peg-IFNα＋リバビリン3剤併用療法臨床試験の結果を追加
● これに伴い「概要」、1型高ウイルス症例に対しての推奨・治療フローチャートを変更
● IFN・リバビリンの投与量についての表を追加
● テラプレビルの治療成績についての図を追加
● 形式および段落ナンバーを「B型肝炎治療ガイドライン(第1.1版)」に倣い変更

2014年9月 第3版
● 「C型肝炎の治療目標」を新たに記載
● 「C型肝炎に対する抗ウイルス療法の歴史」の項を追加
● 「SVRが得られた後のフォローアップの必要性」を「概要」へ移動
● ダクラタスビル・アスナプレビル併用療法臨床試験の結果を追加
● これに伴い「概要」、1型高ウイルス症例に対しての推奨・治療フローチャートを変更
● 「肝硬変に対する治療戦略」の項を新たに追加、推奨を変更
● C型代償性肝硬変（1型高ウイルス）に対する治療フローチャートを作成
● ガイドライン作成委員のCOI情報を記載
● 「資料4」としてHCV薬剤耐性変異測定検査依頼先を記載

2014年10月 第3.1版
● ゲノタイプ2型再治療例に対するテラプレビルの適応追加を記載

2014年12月 第3.2版
● バニプレビル＋Peg-IFNα-2b＋リバビリン3剤併用療法臨床試験の結果を追加、これに伴い1型高ウイルス症例に対しての推奨・治療フローチャートを変更
● 「プロテアーゼ阻害剤治療歴のある症例に対する再治療」の項および治療フローチャートを追加。これにともない、従来の「再治療」を「プロテアーゼ阻害剤治療歴のない症例に対する再治療」に変更
● シメプレビルについての安全性情報を追加
● 「資料4」にHCV薬剤耐性変異測定検査依頼先を追加

2015年3月 第3.3版
● ダクラタスビル・アスナプレビル併用療法の初回治療例、再燃例に対する臨床試験の結果を追加
ダクラタスビル・アスナプレビル併用療法投与制限撤廃に伴い、1型高ウイルス症例に対しての推奨・治療フローチャートを変更

「資料4」HCV薬剤耐性変異測定検査内容をアップデート

2015年5月 第3.4版
- ソホスブビル・リバビリン併用療法の初回治療例、再燃例に対する臨床試験の結果を追加
- これに伴いゲノタイプ2型症例（慢性肝炎・肝硬変）に対しての推奨・治療フローチャートを変更
- 「リバビリン」の項を独立
- DAAについての総説を追加記載
- 「資料2」として各種DAAの併用禁忌・併用注意薬リストを作成

2015年8月 第3.5版
- ゲノタイプ2型に対するソホスブビル・リバビリンについての記載を変更

2015年9月 第4版
- ソホスブビル・レジパスビル併用療法臨床試験の結果を追加
- これに伴いゲノタイプ1型症例に対しての推奨・治療フローチャートを変更
- 「概要」における治療対象の記載を変更
- 「概要」・フローチャートにおける発癌リスク別治療方針および「治療待機」の記載を廃止
- 「治療戦略」・フローチャートにおけるIFN適格/不適格の区分を撤廃

2015年12月 第4.1版
- オムビタスビル・パリタプレビル・リトナビル併用療法臨床試験の結果を追加
- これに伴い、ゲノタイプ1型症例に対しての推奨・治療フローチャートを変更
- DAAs 各論をIFN-based、IFN-freeに分けて記載
- 「資料3併用禁忌・併用注意薬」をIFN-based、IFN-freeに分け、OBV/PTV/rを追加
- 「資料3治療中止基準」「資料4ウイルス学的反応の定義」を削除

2016年5月 第5版
- IFNの項をアップデート
- 各種DAsに市販後の成績（有効性・安全性）を追記
- Special population（HBV/HIV共感染例、腎機能障害・透析例、肝移植後再発例、肝発癌後症例）についての記載を追加
- 「資料２・３併用禁忌・注意薬」をアップデート
- 各リコメンデーションにエビデンスレベル・推奨グレードを付記
C型肝炎治療ガイドライン(第5版) 目次

1. 概要
1-1. C型肝炎の治療目標
1-2. C型肝炎に対する抗ウイルス療法の歴史
1-3. C型肝炎に対する抗ウイルス療法の治療対象
1-4. C型肝炎に対する基本的治療方針
1-5. SVRが得られた後のフォローアップの必要性

2. IFN
2-1. C型肝炎治療に用いられてきたIFNの種類
2-2. IFNの作用機序と治療上の特質
2-3. 副作用
2-4. IFN-based antiviral therapyによる肝発癌抑止効果

3. リバビリン
3-1. 治療成績
3-2. 副作用

4. Direct Acting Antivirals (DAAs)
4-1. IFN-based DAAs
4-1-1. テラプレビル
4-1-1-1. 市販後における治療成績（ゲノタイプ1型）
4-1-1-2. 副作用
4-1-1-3. 薬剤相互作用
4-1-1-4. 薬剤耐性
4-1-2. シメプレビル
4-1-2-1. 国内第3相試験における治療成績
4-1-2-1-1. 初回治療例
4-1-2-1-2. 前治療再燃例
4-1-2-1-3. 前治療無効例
4-1-2-2. 市販後における治療成績
4-1-2-3. 副作用
4-1-2-4. 薬剤相互作用
4-1-2-5. 薬剤耐性
4-1-3. バニプレビル
4-1-3-1. 国内第3相試験における治療成績
4-2-4 オムビタスビル・パリタプレビル・リトナビル配合錠・・・・・・・・・・・・・・・・・・・・・・・・・・・ 43
4-2-4-1. 国内臨床試験の成績・・ 44
4-2-4-2. 副作用・・・ 45
4-2-4-3. 薬剤相互作用・・ 47
4-2-4-4. 薬剤耐性・・ 47
5. 慢性肝炎に対する治療戦略 ... 49
5-1. ゲノタイプ 1 型 ... 55
5-1-1. 基本的治療方針 .. 49
5-1-1-1. IFN-based antiviral therapy ... 49
5-1-1-2. IFN-free antiviral therapy ... 50
5-1-2. 初回治療における抗ウイルス療法の選択 ... 53
5-1-3. 再治療における治療効果予測 ... 54
5-1-4. 再治療における抗ウイルス療法の選択 ... 55
5-1-4-1. DAA を含む治療歴のない症例の再治療 ... 56
5-1-4-1-1. 前治療再燃例・無効例 ... 56
5-1-4-1-2. IFN(リパビリン)治療・副作用中止例 ... 57
5-1-4-2. DAA を含む治療歴のある症例の再治療 ... 58
5-1-4-2-1. DAA を含む IFN 治療歴のある症例の再治療 58
5-1-4-2-2. DAA 併用による IFN フリー治療歴のある症例の再治療 59
5-2. ゲノタイプ 2 型 .. 61
5-2-1. 初回治療 ... 61
5-2-2. 再治療 ... 61
5-3. ALT 正常例への対応 .. 62
6. 肝硬変に対する治療戦略 .. 63
6-1. 代償性肝硬変に対する抗ウイルス治療 .. 63
6-1-1. Peg-IFN+リパビリン併用療法 .. 64
6-1-2. ダクラタスビル/アスナプレビル併用療法 .. 65
6-1-3. ソホスブビル/レジパスビル配合剤 .. 65
6-1-4. ソホスブビル/リパビリン併用療法 .. 66
6-1-5. オムビタスビル・パリタプレビル・リトナビル配合錠 67
6-1-6. 1 型・代償性肝硬変に対する抗ウイルス療法の選択 67
6-1-7. 2 型・代償性肝硬変に対する抗ウイルス療法の選択 68
6-2. 非代償性肝硬変に対する抗ウイルス治療 .. 69
6-3. 血小板減少例に対する治療 ... 70
7. Special population に対する治療戦略

7-1. HBV 共感染例

7-2. HIV 共感染例

7-2-1. 流行学と自然経過

7-2-2. HIV/HCV 重複感染例に対する抗ウイルス療法

7-2-2-1. IFN-based antiviral therapy

7-2-2-2. IFN-free antiviral therapy

7-2-2-3. DAAs を抗 HIV 療法と併用する際の注意

7-2-2-4. ゲノタイプ 3 型

7-3. 腎機能障害・透析例

7-3-1. CKD・透析患者における HCV 感染の現状

7-3-2. HCV 感染と腎移植

7-3-3. 慢性腎臓病・透析患者における抗ウイルス治療

7-3-3-1. ゲノタイプ 1 型

7-3-3-1-1. IFN-based antiviral therapy

7-3-3-1-2. IFN-free antiviral therapy

7-3-3-1-2-1. 治療成績

7-3-3-1-2-2. 安全性

7-3-3-2. ゲノタイプ 2 型

7-4. 肝移植後再発例

7-4-1. 概論

7-4-2. 肝移植後 C 型肝炎の特徴

7-4-3. 肝移植後再発に対する治療

7-4-3-1. ゲノタイプ 1b 型

7-4-3-1-1. IFN-based antiviral therapy

7-4-3-1-1-1. Peg-IFN+リバビリン併用療法

7-4-3-1-1-2. DAA+Peg-IFN+リバビリン療法

7-4-3-1-2. IFN-free antiviral therapy

7-4-3-2. ゲノタイプ 2 型

7-5. 肝発癌後症例

7-5-1. IFN-based antiviral therapy

7-5-2. IFN-free antiviral therapy

8. 肝庇護療法

8-1. ウルソデオキシコール酸 (UDCA)
＜エビデンスレベル＞

1a ランダム化比較試験のメタアナリシス
1b 少なくとも 1 つのランダム化比較試験
2a ランダム割付を伴わない同時コントロールを伴うコホート研究
 （前向き研究、prospective study、concurrent cohort study など）
2b ランダム割付を伴わない過去のコントロールを伴うコホート研究
 （historical cohort study、retrospective cohort study など）
3 case—control study 研究（後向き研究）
4 処置前後の比較などの前後比較、対照群を伴わない研究
5 症例報告、ケースシリーズ
6 専門家個人の意見（専門家委員会報告を含む）

＜推奨グレード＞

A 行うよう強く勧められる
B 行うよう勧められる
C1 行うことを考慮してもよいが、十分な科学的根拠がない
C2 科学的根拠がないので、勧められない
D 行わないよう勧められる
1. 概要

C型肝炎ウイルス（Hepatitis C virus; HCV）は、1989年、米国のChooらによって発見され1）、従来、非A非B型肝炎と診断されていた症例の90%以上、アルコール性肝障害と診断されていた症例の半数以上がHCVによる肝障害であることが明らかとなった。現在、HCVキャリアは全世界で1億7000万人、本邦で150万〜200万人存在すると推定されている。HCV感染が一旦成立すると、健康成人への感染であっても、急性の経過で治癒するものは約30%であり、感染例の約70%でHCV感染が持続し、慢性肝炎へと移行する。慢性化した場合、ウイルスの自然排除は年率0.2%と稀であり、HCV感染による炎症の持続により肝線維化が惹起され、肝硬変や肝細胞癌へと進展する2)。

1-1. C型肝炎の治療目標

C型肝炎治療の目標は、HCV持続感染によって惹起される慢性肝疾患の長期予後改善、即ち、肝発癌ならびに肝疾患関連死を抑制することにある。この治療目標を達成するため抗ウイルス療法を行い、HCVの排除を目指す。事実、インターフェロン（interferon; IFN）治療によってHCV RNAの排除に成功した症例では、肝炎が鎮静化することが示され3）、さらにこうした症例では、肝病変進展や肝発癌が抑制されることも明らかにされている4-7)。ただし、IFNによって血中HCV-RNA持続陰性化（sustained virological response; SVR）が得られた症例においても、HCVの排除がそのまま肝発癌の抑制につながらずではなく、後述の通り、3.3年〜8.0年の平均観察期間で0.9%〜4.2%に発癌を認める7-10)。さらに、2014年に臨床現場に導入されたIFNフリーのDAAs（direct acting antivirals）によってHCVが排除された場合、IFN治療と同程度の肝発癌抑制効果が得られるかどうかについては現時点で明らかでない。従って、IFNあるいはDAAsによってHCVが排除された後でも、長期予後改善のため肝発癌に対するフォローアップを行う必要があります。ことに高齢かつ線維化が進行した高発癌リスク群では肝発癌に対する厳重な注意が必要である。

【Recommendation】

- C型肝炎治療の目標は、HCV持続感染によって惹起される慢性肝疾患の長期予後改善、即ち、肝発癌ならびに肝疾患関連死を抑制することにある。この治療目標を達成するため抗ウイルス療法を行い、HCVの排除を目指す（レベル2b、グレードA）。
- IFN治療によるHCV RNA排除成功例においても、肝発癌は完全には抑制されない（レベル2b、グレードA）。
- IFNフリーのDAAsによってHCVが排除された場合、IFN治療と同程度の肝発癌抑制効果が得られるかどうかについては現時点で明らかでない（グレードB）。
- 抗ウイルス治療によってHCVが排除された後でも、長期予後改善のため肝発癌に対するフォローアップを行う必要がある。ことに高齢かつ線維化が進行した高発癌リスク群では肝発癌に対する厳重な注意が必要である（グレードB）。

1-2. C型肝炎に対する抗ウイルス療法の歴史
IFN による治療は、1986 年、Hoofnagle らが、非 A 非 B 型肝炎に対してヒト組み換え IFNα を投与し、トランスアミナーゼの正常化を確認したことに始まり15)、欧米で 1991 年、本邦では 1992 年から、C 型肝炎に対する IFN 治療の一般臨床での使用が開始された。IFN 単独療法からリバビリン併用療法、さらにベギンターフェロン (pegylated interferon; Peg-IFN) とリバビリンの併用が標準的な抗ウイルス療法となったことにより著効(sustained virological response; SVR) 率は向上したが、難治性である HCV ゲノタイプ 1 型・高ウイルス量症例では同療法においても SVR 率が 40～50%であり、約半数の症例では HCV が排除できなかった。近年、治療効果の向上あるいは副作用軽減を目指して多くの新規抗ウイルス薬が開発され、2011 年 11 月には、第 1 世代プロテアーゼ阻害剤であるテラプレビルがゲノタイプ 1 型高ウイルス量例に対して一般臨床で使用可能となった。テラプレビル +Peg-IFN+リバビリン 3 剤併用療法により、初回治療の SVR 率は約 70%と向上し、抗ウイルス効果は増強したが、高度な貧血の進行、重篤な皮膚病変の出現、腎機能低下などの副作用を認めた16-20)。そして、2013 年 11 月には、第 2 世代プロテアーゼ阻害剤であるシメプレビル21-23)がゲノタイプ 1 型高ウイルス量例に対して保険認可された。シメプレビル+Peg-IFN +リバビリン 3 剤併用療法の国内臨床試験では初回治療の SVR 率は約 90%まで向上し、副作用もプラセボ群とほぼ同等であった21)。その後、2014 年 7 月には IFN 無効の DAA、プロテアーゼ阻害剤（アスナプレビル）と NS5A 阻害剤（クラタプレビル）の併用療法が認可され、従来抗ウイルス療法が困難であった IFN 不適格例や IFN 無効例に対する治療が可能となり、国内臨床試験における SVR 率は 80～90%であった24)。さらに、2015 年 6 月に認可された第 2 世代 IFN 無効の DAA、NS5B 阻害剤（ソホスブビル）と NS5A 阻害剤（レジバスビル）の併用療法の国内臨床試験では SVR 率は 99%であり、ソホスブビル/レジバスビル併用療法群では、副作用による投与中止例はなく、重篤な副作用も認めなかった。さらに 2015 年 9 月にはプロテアーゼ阻害剤（バリタプレビル）と NS5A 阻害剤（オムビタスビル）、および、抗ウイルス効果はないもののバリタプレビルの血中濃度を上昇させ半減期を延長させるブースト効果を期待して配合されたリトナビルの併用療法が認可され、国内臨床試験での SVR12 は 95%以上と良好な成績が得られている。一方、ゲノタイプ 2 型に対しては、従来、Peg-IFN+リバビリン併用療法において約 80%の SVR 率が得られていたが、2014 年 9 月には、Peg-IFN+リバビリン併用療法などの非著効例に対してテラプレビル+Peg-IFN+リバビリン 3 剤併用療法が使用可能となった。そして 2015 年 3 月には、ゲノタイプ 2 型に対しても、IFN 無効のソホスブビル/リバビリン併用療法が認可され、国内臨床試験における SVR 率は 97%まで向上した。

1-3. C 型肝炎に対する抗ウイルス療法の治療対象

一般に、HCV 持続感染者の肝病変は、ALT 上昇を伴って緩徐に進み、線維化の進展とともに発癌リスクも高率になる7)。逆に、肝に炎症や線維化のない正常肝からの発癌はほとんど認めない。したがって、非代償性肝硬変を除くすべての C 型肝炎症例が抗ウイルス療法の治療対象となるが、肝の炎症を反映する ALT 値が上昇している症例(ALT 30 U/1 超)、あるいは、肝の線維化的程度を反映する血小板数が低下している症例(血小板数 15 万/μl 未満)が、C 型肝炎に対する抗ウイルス療法
法の良い治療適応となる。また、肝病変以外の合併疾患による予後が不良である場合は治療対象としない。ALT 30 U/l 以内かつ血小板数 15 万/μl 以上の症例については、肝発癌リスクが低いことを考慮に入れて抗ウイルス療法の適応を決める必要があるが、高齢者では ALT 30 U/l 以内かつ血小板数 15 万/μl 以上でも発癌リスクは低くはないことに留意すべきである。

また、早期のウイルス排除が必要とされるのは、高発癌リスク群である。C 型肝炎では、“高齢”、“線維化進展例”、“男性”的 3 因子が肝発癌に対する独立した危険因子であることが明らかになっている 4-6)。これらの因子を多くもつ症例は発癌リスクが特に高いため、早期に抗ウイルス療法の導入が考慮されるべきである。【Recommendation】

- 非代償性肝硬変を除くすべての C 型肝炎症例が抗ウイルス療法の治療対象となるが、ALT 値上昇例（ALT 30 U/l 超）、あるいは血小板数低下例（血小板数 15 万/μl 未満）の C 型肝炎患者は、抗ウイルス療法の良い治療適応である（レベル 1b、グレード A）。
- 肝病変以外の合併疾患による予後が不良である場合は治療対象としない（グレード A）。
- ALT 30 U/l 以内、かつ血小板数 15 万/μl 以上の症例については、肝発癌リスクが低いことを考慮に入れて抗ウイルス療法の適応を決める。ただし、高齢者では ALT 30 U/l 以内かつ血小板数 15 万/μl 以上でも発癌リスクは低くないことに留意すべきである（グレード B）。

1-4. C 型肝炎に対する基本的治療方針

C 型肝炎における肝発癌解析において、高齢者の定義は、55 歳、60 歳あるいは 65 歳以上など一定ではないが、一般に、高齢の中でも年齢が上昇するにつれて発癌リスクは高い。本ガイドラインでは、65 歳を超えると肝発癌率が上昇すること 8)などに基づいて、“66 歳以上”を高齢者と定義した。また、線維化進展例は“肝線維化 F2 以上または血小板数 15 万/μl 未満”とするが、このなかでも“肝線維化 F3 以上または血小板数 12 万/μl 未満”では特に発癌リスクが高いことに留意する必要がある。

高発癌リスク群（高齢かつ線維化進展例）では、治療への認容性が許せば、可及的速やかに抗ウイルス療法を導入すべきであり、高齢、あるいは線維化進展いずれかのみの症例でも早期の抗ウイルス療法の導入が望ましい。一方、低発癌リスク群である非高齢かつ非線維化進展例では、治療効果、副作用、ならびに肝発癌リスクを考慮に入れて現時点での抗ウイルス療法の適応を決める。

また、いずれの群においても、ウイルス排除を目的とした抗ウイルス療法が現時点で困難であり、ALT が異常値（30 U/l 超）の場合は、肝庇護療法（SNMC、UDCA）を行う。また、肝炎制限化を目指した Peg-IFN (IFN) 少量長期投与も選択肢となる。こうした治療で十分な効果が得られず、鉄過剰が疑われる場合には、湧血療法の併用あるいは同療法への変更を考慮する。これらの治療によって、ALT を 30 U/l 以下に保つことを目標とし、できるだけ低値になるようにコントロールする。特に、発癌リスクの高い群では、厳密な ALT コントロールが必要である。なお、Peg-IFN (IFN) 少量投与は、6 か
月以内に ALT 値改善(40 U/l 以下)あるいは AFP 値改善(10 ng/ml 以下)を認めない場合は、中止する 25, 26)。

【Recommendation】

- 高発癌リスク群(高齢かつ継続化進展例)では、治療への認容性を考慮しつつ、可及的速やかに抗ウイルス療法を導入すべきである(レベル 2b, グレード A)。
- 低発癌リスク群(非高齢かつ非継続化進展例)では、治療効果、副作用、ならびに肝発癌リスクを考慮に入れて現時点での抗ウイルス療法の適応を決める(レベル 2b, グレード A)。
- ウイルス排除ができない場合、肝病変進展予防あるいは肝発癌予防を目指して肝庇護療法を行う。また、肝炎鎮静化を目指した Peg-IFN (IFN) 少量長期投与も選択肢となる。これらの治療で十分な効果が得られず、鉄過剰が疑われる場合には、漏血療法の併用あるいは同療法への変更を考慮する(レベル 2b, グレード B)。

1-5. SVR が得られた後のフォローアップの必要性

SVR は抗ウイルス治療終了後 24 週時点における HCV RNA の陰性化と定義される。IFN 治療後の SVR 例における HCV RNA の陰性化は通常持続的であり、IFN+リバビリン併用療法による SVR 例の持続陰性化率は、平均 5.6 年(1 年～8.3 年)の経過観察において 99%～100%と報告されている 27, 28)。一方、2000 年より以前に行われた検討では HCV RNA の持続陰性化率は 96%～98%と報告されやや低率であった 29-33)。その要因として、これらの検討では IFN 単独療法が主体であったことや、当時 HCV RNA の検出感度が低く SVR 判定に偽陽性が存在したことが考えられる。

IFN 治療によって SVR が達成されると HCV RNA の持続陰性化が得られ、C 型肝炎からの発癌リスクは有意に低下する 5-7, 11, 34)。しかし、SVR 後も肝発癌リスクは完全には消失せず、SVR 後の 5 年・10 年の発癌率は、それぞれ 2.3～8.8%、3.1～11.1%と報告されている 35)。これらの結果から、SVR 後の発癌は、SVR 後 5 年以降も観察されており、海外における多施設前向き研究でも SVR 後 7 年以上経ってからの発癌例が 50%を占めたと報告されている 36)。これらのことは、C 型肝炎患者ではウイルスが排除されても健康者に比し発癌リスクの高い状態が長期間残存することを示唆するものであり、そのリスク因子の同定は重要である。

これまで SVR 後の発癌リスク因子についての報告は限定的であったが、近年わが国を中心にエビデンスが集積されてきた 7, 8, 37-50) (表 1)。現在のところ、最も明確なリスク因子は肝線維化であり 45)、Morgan らのメタアナリシスでも全患者における SVR 後の発癌率が 1.5%であったのに対して、線維化進展例だけでなく治癒すると 4.2%と高率であった 51)。このほか複数の観察研究から種々のリスク因子が報告されており(表 1)、特に高齢、男性、アルコール摂取、肝脂肪化、糖尿病などが重要である 8, 35, 52)。また最近では、SVR 後発癌を予測する IFN 治療後のバイオマーカーに関する報告もなされており、Asahina 39) らや Oze 46) らは、IFN 治療において、上述の治療前因子に加え、治療後因子が肝発癌に関与することを報告した。すなわち、以前から知られていた治療後 ALT 高値のみならず、治療
表1 SVR後の発癌リスク因子

<table>
<thead>
<tr>
<th>著者・文献</th>
<th>SVR例数</th>
<th>観察期間(年)</th>
<th>リスク因子</th>
<th>ハザード比</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshida et al. 1999</td>
<td>789</td>
<td>4.3</td>
<td>肝線維化</td>
<td></td>
</tr>
<tr>
<td>Makiyama et al. 2004</td>
<td>1197</td>
<td>5.9</td>
<td>≧50歳、男性、≧F3</td>
<td>7.4</td>
</tr>
<tr>
<td>Ikeda et al. 2005</td>
<td>1056</td>
<td>4.7</td>
<td>≧60歳、AST＞100U/L、血小板＜15万/μL</td>
<td>3.1</td>
</tr>
<tr>
<td>Tokita et al. 2005</td>
<td>126</td>
<td>5.5</td>
<td>≧65歳、≧F3、アルコール≧27g/日</td>
<td></td>
</tr>
<tr>
<td>Tanaka et al. 2007</td>
<td>266</td>
<td>9.9</td>
<td>≧55歳、≧F3、肝脂肪化≧2</td>
<td></td>
</tr>
<tr>
<td>Asahina et al. 2010</td>
<td>686</td>
<td>7.5</td>
<td>年齢（10歳毎）、男性、≧F3、肝脂肪化≧10%</td>
<td>2.7</td>
</tr>
<tr>
<td>Akuta et al. 2011</td>
<td>1273</td>
<td>1.1</td>
<td>≧55歳、≧F3、コア70変異（ゲノタイプ1b）</td>
<td>3.1</td>
</tr>
<tr>
<td>Hung et al. 2011</td>
<td>1027</td>
<td>4.3</td>
<td>糖尿病</td>
<td></td>
</tr>
<tr>
<td>Chang et al. 2012</td>
<td>871</td>
<td>3.4</td>
<td>≧60歳、≧F3、血小板＜15万/μL、治療後AFP≧20ng/mL</td>
<td>3.8</td>
</tr>
<tr>
<td>Arase et al. 2013</td>
<td>1900</td>
<td>8.1</td>
<td>年齢（10歳毎）、男性、アルコール、2型糖尿病</td>
<td>2.6</td>
</tr>
<tr>
<td>Asahina et al. 2013</td>
<td>913</td>
<td>6.1</td>
<td>年齢（10歳毎）、男性、≧F3、肝脂肪化≧10%、アルブミン（1g/dl毎）、治療後ALT（40U/L毎）、治療後AFP（10ng/mL毎）</td>
<td>2.2</td>
</tr>
<tr>
<td>Oze et al. 2014</td>
<td>1425</td>
<td>3.3</td>
<td>≧65歳、治療後AFP≧5ng/mL</td>
<td>5.8</td>
</tr>
<tr>
<td>Yamashita et al. 2014</td>
<td>562</td>
<td>4.8</td>
<td>≧50歳、≧F2、アルコール≧30g/日、治療後AFP≧8ng/mL</td>
<td>4.1</td>
</tr>
<tr>
<td>Huang et al. 2014</td>
<td>642</td>
<td>4.4</td>
<td>≧65歳、≧F2、γGTP≧75U/L</td>
<td>4.2</td>
</tr>
<tr>
<td>Toyoda et al. 2015</td>
<td>522</td>
<td>7.2</td>
<td>糖尿病、Fib-4index</td>
<td>2.1</td>
</tr>
<tr>
<td>Chang et al. 2015</td>
<td>801</td>
<td>5.0</td>
<td>≧60歳、≧F3、血小板＜15万/μL、治療後AFP≧20ng/mL</td>
<td>3.8</td>
</tr>
</tbody>
</table>
後 AFP 高値が発癌の高リスクであり、発癌予測における重要なサロゲートマーカーとしている。また、IFN 治療後 24 週時点での Fib-4 index や WFA’M2BPGi の有用性も指摘されている。

現在のところ、SVR 後における肝癌スクリーニングの効果的な方法とその有用性を前向きに直接検討した報告はない。また、費用対効果も不明である。しかし、わが国における SVR 症例 562 例からなるコホートを解析した後ろ向き研究では、定期的肝癌スクリーニング（腹部超音波を少なくとも 6 か月毎）を受けていた症例の 5 年生存率が 93% であったのに対して、受けてない症例では 60％と予後不良であった。従って、SVR 後であっても、高齢、男性、アルコール摂取、肝脂肪化、糖尿病など現時点で同定されているリスク因子、および治療後のバイオマーカーに基づいて、定期的な肝癌スクリーニングを継続すべきである。

また、現在臨床現場に導入されている IFN フリーの DAAs によって SVR が得られた場合、IFN による SVR と同程度の肝発癌抑制効果が得られるかどうかについては現時点でエビデンスがない。従って、DAAs による HCV 排除は、さらに注意深い肝発癌スクリーニングが必要である。ことに、高発癌リスクである高齢かつ線維化進展例においては厳重にフォローアップを行うことが推奨される。

【Recommendation】

- IFN による SVR 後の発癌リスクとしては、高齢、男性、線維化進展、飲酒、肝脂肪化、インスリン抵抗性などが挙げられ、これらのリスク因子に応じて著効後も肝癌のスクリーニングを継続する必要がある（レベル 2b、グレード A）。SVR 後も肝発癌リスクは完治には消失せず、SVR 後の 5 年・10 年の発癌率は、それぞれ 2.3-8.8％、3.1-11.1％である（エビデンスレベル 1b、グレード A）。
- SVR 後であっても、高齢、男性、アルコール摂取、肝脂肪化、糖尿病など現時点で同定されているリスク因子、および治療後のバイオマーカーに基づく定期的な肝癌スクリーニングを継続すべきである（エビデンスレベル 3、グレード C1）。
- IFN フリーの DAAs によって SVR が得られた場合、IFN による SVR と同程度の肝発癌抑制効果が得られるかどうかについては現時点でエビデンスがなく、さらに注意深い肝発癌スクリーニングが必要である。ことに、高発癌リスクである高齢かつ線維化進展例においては厳重にフォローアップを行うことが推奨される（グレード C1）。

2. IFN

2-1. C 型肝炎治療に用いられてきた IFN の種類

C 型肝炎の治療薬として臨床応用に至ったのはIFN であり、これには IFN α と IFN β がある。通常型（非修飾型）の IFN は不安定で血中半減期は 3〜8 時間と短いため、少なくとも週 3 回の投与が必要とし、また IFN 血中濃度の上昇・下降を繰り返すため発熱・悪寒・頭痛などの副作用をきたす。これに対して、IFN を PEG 化すると体内での薬物動態が安定化し、週 1 回の投与で治療域の血中濃度が維持される。PEG 化 IFN には、IFN α-2a に 40kD の分岐鎖 PEG を共有
結合させたPeg-IFNα-2aと、IFNα-2bに12kDの一本鎖PEGをウレタン結合作せたPeg-IFNα-2bがあり、前者は固定容量の180μg/週が、後者は1.5μg/kg/週が標準投与量である。Peg-IFNα-2aとPeg-IFNα-2bの治療効果・副作用における相違についてはほぼ同等と考えられており56-59）。実臨床においてはどちらかの製剤を推奨するという明確なエビデンスはない。IFNフリー治療が第一選択となるまでは、IFNベース治療の基盤として主にPEG-IFNαがリバビリンおよびDAAsであるプロテアーゼ阻害薬と併用して用いられてきた。併用するDAAsにより使用可能なPeg-IFNαの種類は異なる。

IFNβは、天然型の非PEG化製剤のみが使用可能であり、単独投与またはリバビリンとの併用が保険適用となっている。静注または点滴静注で投与され週3回以上の投与を行う。IFNβは、副作用のプロフィールがIFNαとは異なり、血小板の低下が軽微であり60）、うつなどの副作用に対する認容性が高い61-63）。天然型IFNβを1日2分割投与すると抗ウイルス効果は1日1回投与に比し強力で64）、導入療法としてIFNβ2分割投与が試みられたことがある65）。

2-2. IFNの作用機序と治療上の特質

I型IFNが標的細胞膜上のI型IFN受容体に結合すると、チロシン型蛋白リン酸化酵素であるJAK1が活性化され、IFN受容体の細胞内ドメインのチロシン残基のリン酸化を引き起こす結果、STAT1のリン酸化および2量体形成が起こり、これが核内へと情報を伝達する。核内に情報が伝達されると、種々の抗ウイルス遺伝子・免疫調節遺伝子で構成されるIFN誘導遺伝子(IFN stimulated genes; ISGs)群が誘導・増強され、抗ウイルス効果が発揮されると考えられている66-68）。この様にIFNの抗ウイルス効果は、主に宿主の反応を介するため、IFNベース治療の治療効果はIFNの応答性を規定するIL28B遺伝子近傍の1遺伝子多型（SNPs）や、年齢、性別、および肝線維化等の宿主因子に強く影響される69-72）。一方、IFNはHCVゲノタイプ、コア70/91番のアミノ酸変異、NS5A領域のISDRやIRRDRのアミノ酸変異などのウイルス側因子により抗ウイルス効果が異なるが73-76）、DAAsに対する薬剤耐性ウイルスに対しては野生型とほぼ同等の抗ウイルス活性を有する。従って、IFNに対する反応良好例では、シメプレビルを併用した場合のNS3領域のQ80K変異を除けば、併用するDAAsに対する薬剤耐性変異ウイルスが治療前に存在しても、存在しない症例と同等の治療成績が得られることがIFNベース治療の利点である77）。またIFNの薬理効果は多彩であり、特に宿主の自然免疫および獲得免疫を介した抗腫瘍作用も有する点もDAAsにはない大きな特徴である78）。

2-3. 副作用

IFNに関連した副作用はほぼ全ての患者に認められる。中でも全身倦怠感・発熱・頭痛・関節痛などのインフルエンザ様症状は最もよく認められる副作用で、60%～95%の患者に認められる。インフルエンザ様症状に対しては、消炎解熱鎮痛剤の投与により多くはコントロール可能である。血液検査所見では白血球減少がみられ、1000/mm³未満に低下する症例が約60%に認められる。しかし、好中球減少に関わる重篤な感染症は少ないと考えられている79）。白血球・好中球と血小板の減少
は投与開始4週目までに進行し、その後定常状態になることが多い。抑うつ・不眠などの精神症状も5%～10%に認められ、うつ病の既往や治療前精神症状がある症例で起こりやすい。精神症状は、うつ状態の症状とうつ病に関連した自律神経症状に分けられ、前者に対しては選択的セロトニン再取り込み阻害薬が効果的である。また、IFNは慢性甲状腺炎などの自己免疫性疾患を惹起または増悪させる可能性があり、自己免疫性疾患合併例ではIFN投与に際し厳重な注意が必要である。間質性肺炎も副作用として報告され、重篤となり生命の危険が生じることがある。治療開始2か月以降や治療後期に起こることが多い。乾性咳や呼吸困難などの呼吸器症状が出現した際には、速やかに胸部CTを行うなど迅速かつ適切な対応が必要である。間質性肺炎の診断に血中KL-6の測定も有用である。その他、心筋症、眼底出血などが副作用として挙げられる。

【Recommendation】
- IFNの抗ウイルス効果は、IL28B遺伝子近傍のSNPsや、年齢、性別、および肝線維化等の宿主因子、およびHCVゲノタイプ、コア70/91番のアミノ酸変異、NS5A領域のISDRやIRRDRのアミノ酸変異数等のウイルス因子に影響を受ける（エビデンスレベル2b、グレードA）。
- IFNはDAAsに対する耐性変異ウイルスに対してもほんの同等の抗ウイルス活性を有する（エビデンスレベル2a、グレードB）。
- IFNは宿主免疫の誘導を介した抗腫瘍作用も有する（エビデンスレベル2b、グレードA）。
- IFNの副作用には、インフルエンザ様症状、血球減少、精神症状、自己免疫現象、間質性肺炎、心筋症、眼底出血が挙げられる（エビデンスレベル1b、グレードA）。

2-4. IFN-based antiviral therapyによる肝発癌抑制効果

IFN治療による肝細胞癌抑制効果については、わが国からの報告が多い。Ikedaらは初回IFN単独療法を施行したC型慢性肝炎症例において、治療効果別にみた累積肝細胞癌発症率を後ろ向きに検討し、10年累積発症率は無治療群（n=452）が12.0%、非SVRかつALT異常のIFN無効群（n=1,076）では15.0%であったのに対し、SVR群（n=676）では1.5%と有意に低率であり発癌抑制効果が認められた。また非SVRでもALTが正常化したいわゆる不完全著効群（n=298）でも10年累積発癌率は2.0%と低下していた。同様の報告はImaiら34)やKasaharaら35)からも報告され、IFN投与によるALT正常化群で累積発癌率が低かった。また、Yoshidaらは2,890例の大規模後向き研究により、IFN投与によるSVRが発癌抑制因子となることを報告し、ALTが正常の2倍以下に改善することでも発癌抑制効果がある可能性を示した。また、IFN著効例の肝線維化進展率は平均-0.28/年と計算され、ウイルス排除により肝線維化が改善することを示し、非著効例でも-0.02/年と線維化の進展抑制が認められたことを報告した。また、Okanoueらは線維化進展度別の発癌抑制効果を示し、IFNによる線維化改善効果を報告している。IFN治療の発癌抑制効果を検討した無作為比較試験としてはNishiguchiらの報告が挙げられ、C型肝硬変を対象とした前向き検討によりIFNの投与によるHCV排除またはALT値の持続的正常化により肝癌発生および肝不全発症のリスクを低減することを示唆している。
スクが有意に軽減されることが示された。以上の結果より、IFN 治療によって未治療群に比し肝細胞癌発生が抑制されること、IFN によりウイルスの排除のみならず生化学的効果が認められれば、肝細胞癌の発生は予防されることが示唆された。最近、日本、アジア、欧州、および北米における 30 報の観察研究を対象としたメタアナリシスが報告され（25,906 例、観察期間 3.0-8.2 年）、非 SVR 例では 6.2% の発癌率であったのに対して、SVR 例では 1.5%（HR0.24）であり、IFN ベース治療による発癌抑制効果のエビデンスが示された。IFN による発癌抑制機序としては、直接の抗ウイルス作用と、IFN の有する増殖抑制作用や抗腫瘍免疫の誘導を介した腫瘍抑制作用の関与が考えられる。

【Recommendation】

- IFN-based antiviral therapy により HCV が排除されると肝発癌リスクは低下する（エビデンスレベル 1b、グレード A）。

リバビリン（ribavirin）

リバビリンは、グアノシンと化学構造が類似したプリンヌクレオシドアナログで、RNA および DNA ユイルスに幅広い抗ウイルス活性を示す。リバビリンの作用機序として、Th1 優位の免疫誘導作用、ウイルスの変異誘導、RNA ポリメラーゼの抑制、細胞内 GTP の枯渇作用などが推察されている。C 型慢性肝炎に対するリバビリンの単独投与では、ALT 改善効果はあるものの、HCV RNA 量の低下や肝組織の改善効果は認められない。しかし、IFNα-2b とリバビリンの併用投与は、IFNα-2b 単独投与よりもウイルス排除効果および ALT 改善効果が優れている。

発売当時、リバビリンは PEG 化 IFN 製剤である Peg-IFNα-2a または Peg-IFNα-2b との併用で用いられていた。Peg-IFNα-2b+リバビリン併用療法では Peg-IFN 単独療法と比べ、より高率に治療終了時の HCV RNA 陰性化が得られるが、最も重要な点はリバビリン併用により治療終了後の再燃率が著明に低下することである。国内では Peg-IFN 製剤の他に、通常型 IFN である IFNα-2b, IFNβ との併用が可能である。また 2015 年 3 月には、ゲノタイプ 2 型の C 型慢性肝炎・肝硬変に対して、DAA・NS5B 阻害薬であるソホスブビルとの併用が承認された。C 型慢性肝炎に対するリバビリンの一日投与量は、投与開始前の Hb が 14 g/dl 以上の場合、体重 60 kg 以下では 600 mg、61 〜 80 kg で 800 mg、80 kg 超では 1,000 mg である。

3-1. 治療成績

Peg-IFN とリバビリン併用療法の有効性は 2 つの国内第 3 相臨床試験で報告されている。国内臨床研究では、ゲノタイプ 1b 型・高ウイルス量（>100 KIU/ml）症例に対する Peg-IFNα-2b+リバビリン併用 48 週治療の SVR 率は 48%（121/254）であり、Peg-IFNα-2a+リバビリン併用 48 週治療の SVR 率は 59%（57/96）である。一方、ゲノタイプ 1b 型・高ウイルス量症例以外では、Peg-IFNα-2b+リバビリン併用 24 週投与により、89%（40/45）高い SVR 率が得られている。

なお、ゲノタイプ 2 型症例に対するリバビリンとソホスブビル併用療法の成績はソホスブビルの項
で詳細する。

3-2. 副作用

リバビリンは1日2回、朝・夕食後に経口投与する。内服1〜2時間で血中濃度は最大となり、連日投与では血中濃度が平衡化されるのに約4〜8週を要する。リバビリンには蓄積性があり、肝臓内、赤血球内、筋肉内に長期間残存する。排泄は主に腎臓で行われるため、腎疾患や腎機能障害のある患者に対しては慎重に投与する必要がある。クレアチニンクリアランスが50ml/min以下の症例では禁忌である。また、透析ではリバビリンを除去できないことから、透析中の腎不全患者には原則禁忌となっている。

リバビリンの主な副作用は溶血性貧血であり、貧血を有する患者や心疾患（心筋梗塞、心不全、不整脈など）を有する患者では適応を慎重に検討する必要がある。Peg-IFNα-2b+リバビリン併用療法の国内臨床試験では、貧血による副作用のため、20%の症例でリバビリンの減量が、8〜11%の症例で治療の中断が必要であった。投与開始前のHb濃度14g/dl未満、好中球数2,000/μlあるいは血小板数12万/μl未満の患者、および女性では薬剤の減量を要する頻度が高くなる。特に、65歳以上でHb13g/dl以下の症例では、80%でPeg-IFNないしリバビリンの減量が必要であった。治療開始2週後にHbが2g/dl以上減少した症例では貧血による治療中止率が高いため、この時点でリバビリンを200mg減量することが提唱されている。投与中にHb低下がみられた場合のリバビリンの減量・中止基準（心疾患のない症例）は、Hbが10g/dl未満で200mg（1,000mg投与例は400mg）減量、8.5g/dl未満で中止となっている。治療開始後のHb値の低下が5g/dl以上であった症例は、治療開始後7週で約2g/dlの中止がみられた。

その他、リバビリンに関する副作用として、リンパ球減少、高尿酸血症、瘙痒感、皮疹、咳嗽、鼻閉などがある。また、リバビリンは動物実験において催奇形性が報告されており、妊娠中ないし妊娠している可能性のある女性患者、授乳中の女性患者に関しての投与は禁忌である。また、精液中への移行も否定できないことから、妊娠する可能性のある女性、およびパートナーが妊娠する可能性のある男性患者に対して投与する場合は治療中および治療終了後6カ月間避妊を指示する必要がある。
【Recommendation】

リバビリンの主な副作用は溶血性貧血であり、貧血を有する患者や心疾患を有する患者では適応を慎重に検討する必要がある（エビデンスレベル 1b、グレード A）。

Peg-IFN+リバビリン併用療法中の高度貧血にinosinetriphosphatase（ITPA）遺伝子のSNPs（rs7270101、rs1127354）が関与する（エビデンスレベル 2b、グレード A）。

リバビリンの排泄は主に腎臓で行われるため、腎疾患や腎機能障害のある患者に対しては慎重に投与する必要がある。クレアチニンクリアランスが50 ml/min以下の症例では禁忌、透析中の腎不全患者には原則禁忌となっている（エビデンスレベル 1b、グレード A）。

催奇形性の懸念があることから、妊娠中・授乳中の女性患者に対しての投与は禁忌である。また、妊娠する可能性のある女性、およびパートナーが妊娠する可能性のある男性患者に投与する場合は避妊を指示する必要がある（エビデンスレベル 1b、グレード A）。

4. Direct Acting Antivirals（DAAs）

C型肝炎ウイルスのプラス1本鎖RNAゲノムは約9,600塩基対であるが、このうちウイルス粒子に取り込まれない非構造領域は、NS2～NS5B領域に分けられている。現在、直接型抗ウイルス薬（Direct Acting Antivirals；DAAs）の標的となっているのはこのうちNS3/4A、NS5A、NS5B領域であり、それぞれプロテアーゼ活性、ウイルスゲノム複製複合体形成、RNA依存性RNAポリメラーゼ活性を有している。

図1 DAAの分類と作用機序
2016年5月現在、NS3/4Aプロテアーゼ阻害薬としてはテラプレビル、シメプレビル、アスナプレビル、バニプレビル、バリタプレビルの5種、NS5A複製複合体阻害薬としてはダクラタスビル、レジパスビル、オムビタスビルの3種、さらにS5B阻害薬としてソホスブビルが認可され、日常臨床に用いられている（図1）。このうち、プロテアーゼ阻害薬であるテラプレビル、シメプレビル、バニプレビルはPeg-IFN、リバビリンとともにIFN-based therapyとして使用され、その他のDAAsはアスナプレビル+ダクラタスビル、ソホスブビル+レジパスビル、バリタプレビル+オムビタスビルの組み合わせでIFN-free therapyとして投与される。

4-1. IFN-based DAAs

4-1-1. テラプレビル（telaprevir）
テラプレビルは、α-ketoamide 系列の最適化により見出された経口投与可能な抗ウイルス薬である104）。プロテアーゼ阻害剤であるテラプレビルは、HCV の増殖に重要な役割を果たしている HCV 遺伝子非構造蛋白である NS3-4A プロテアーゼを直接阻害することにより、ウイルス増殖を強力に阻害する105）。特にゲノタイプ 1 型の HCV に対するウイルス増殖抑制作用が強い。テラプレビルは、ゲノタイプ 1 型・高ウイルス量（5.0 LogIU/ml 以上）の C 型慢性肝炎の治療に対して Peg-IFN とリバビリンとの併用療法として国内第 3 相試験が行われ、ゲノタイプ 1 型の初回治療例、前治療再燃例に対する SVR 率がそれぞれ 73%、88%と、対照群の Peg-IFN+リバビリン 2 剤併用群に比べ有意に良好であったことから、2011 年 9 月日本で薬事承認された。しかし、国内第 3 相試験の段階すでに重篤な皮膚症状と貧血がみられたことに加え、市販後新たに腎機能障害の出現が問題となり、第 2 世代プロテアーゼ阻害薬および IFN-free therapy DAA が発売されたこともあって、2016 年 5 月現在テラプレビルは日常臨床においてほとんど使用されることはない。

2014年 9 月、ゲノタイプ 2 型の C 型慢性肝炎における IFN（+リバビリン）治療による前治療再燃・無効例に対しても適応追加された。ゲノタイプ 2 型に対して Peg-IFN+リバビリンとの併用で保険適用されるプロテアーゼ阻害薬はテラプレビルだけであり、前治療再燃・無効例に対して使用されるが、上記の副作用には注意が必要である。

4-1-1-1. 市販後における治療成績（ゲノタイプ 1 型）
ゲノタイプ 1 型症例に対し企業による市販後調査が行われ、有効性および安全性が報告されている106）。これによると、投与症例 3,563 例のうち有効性が評価可能であった 2,559 例において、SVR 率 87.7%（2,243/2,559）であり、うち初回治療例では 91.8%（903/984）、前治療再燃例 91.0%（1,016/1,116）・無効例 70.6%（324/459）と報告されている。一方、企業ではなく他施設からの市販後の成績としては、全体における SVR 率は 81.8%（207/253）107）、87.7%（93/106）108）、82.0%（132/161）109）、79.2%（126/159）110）などと報告され、企業による市販後調査と同等ないしやや低い結果が得られている。
【Recommendation】

- 市販後におけるゲノタイプ1型症例に対するテラプレビル+Peg-IFNα-2b+リバビリン 3 剤併用療法 24 週投与での SVR 率は概ね 80〜90%と報告されている（エビデンスレベル 2a、グレード A）。

- 国内第 3 相試験におけるゲノタイプ2型再燃例・無効例に対するテラプレビル+Peg-IFNα-2b+リバビリン 3 剤併用療法 24 週投与での SVR 率は、それぞれ 88%、50%であった（エビデンスレベル 2a、グレード A）。

4-1-1-2. 副作用

テラプレビル+Peg-IFN+リバビリン 3 剤併用療法では、Peg-IFN+リバビリン 2 剤併用療法よりも副作用は増加する。このうち重要な副作用は、皮膚症候、貧血、血中クレアチニン増加（腎障害）、高尿酸血症である。

国内第 3 相試験において、皮膚症候は、85%（226/267 例）の患者に発現し、重症度は 2 剤併用療法よりも高かった。発現時期は投与開始 7 日目までに 56%（150/267 例）、28 日目までに 77%（205/267 例）の患者に認められた。5%（19/355 例）の症例では体表面積の 50%を超えて出現した。発熱やリンパ節腫脹などの全身症候を伴う症例は、ステープルス・ジョンソン症候群（SJS）や薬剤性過敏症候群（DIHS）および粘膜症候を伴う多型紅班など、重篤な皮疹が 1.5%（4/267 例）に出現した。従って、皮膚症候に対しては、皮膚科医の診察を受ける必要がある。皮膚科医との連携のもと、その程度に応じてステロイド剤の外用・抗アレルギー剤の内服、さらには重症例ではステロイド剤の全身投与など適切な治療を早期に行う必要がある。多くの症例では、ステロイド剤の外用、抗アレルギー剤の内服で管理可能である。ただし、皮膚症候が出現した際には肝臓専門医が自ら処置を行うのではなく、軽微なものであっても必ず皮膚科専門医の診察を依頼し、重症化の可能性や用外薬・内服薬など皮膚症候の治療方針について指示を仰ぐべきであり、その後も十分な連携が必要である。テラプレビル投与後の可否に関しても治療効果と副作用を考慮し、皮膚科との連携のもと決定する必要がある。

貧血は Peg-IFN+リバビリン 2 剤併用療法でも重要な副作用の一つであり、ITPA 遺伝子の SNP（rs1127354）が治療中の Hb 値の低下に密接に関係する。治療中の Hb 値の低下に密接に関係する。初回治療例を対象とした国内臨床試験では、Grade 1 の貧血（Hb 9.5〜11.0 g/dl）はテラプレビル+Peg-IFN+リバビリン 3 剤併用、Peg-IFN+リバビリン 2 剤併用それぞれにおいて 39.7%、50.8%の頻度で出現したが、Grade 2（Hb 8.0〜9.5 g/dl）はそれぞれ 27.0%、17.5%であり、Grade 3（Hb <8.0 g/dl）の貧血は 3 剤併用群だけにしか出現しなかった。また 3 剤併用療法では貧血による治療中止率も高い。

テラプレビルを併用した 3 剤併用療法でも、2 剤併用療法と同じく、ITPA 遺伝子が CC ゲノタイプの症例では CA/AA ゲノタイプの症例よりも治療開始早期において Hb 値の低下は有意に大きく、
CCゲノタイプの症例では治療開始後4週目まで急速なHb値の低下がみられる13)。治療開始後4週目の時点でHb値が11.0 g/dl未満に低下することに関係する因子は、女性、BMI＜23、ITPA遺伝子のCCゲノタイプ、年齢50歳以上であった。また投与中にHb値が中止基準である8.5 g/dl未満に低下することに関係する因子は体重60kg未満、年齢61歳以上であった。このような因子を持った症例ではHb値の推移に十分注意する必要がある。

貧血の進行に対してはHb値を頻回に測定し、リバビリンを早期に減量して対処すべきである。前に述べたように、初回治療例・再燃例に対する国内臨床試験では、治療効果に対するリバビリン減量の影響は比較的小さいことが報告されており16,18)、ことに再燃例ではリバビリンを最低20%投与していれば85%以上のSVRが得られている18)。

その他注意すべき点として、市販後調査で腎機能障害、高尿酸血症が出現することが明らかになった。多くの症例では投与開始1週間以内に出現しており、投与開始直後には血中クレアチニン・尿酸値の上昇に注意が必要である。血中クレアチニンが上昇した場合は、テラプレビルの減量も考慮して対処すべきである。尿酸値の上昇には尿酸降下薬を速やかに使用すべきである。また、テラプレビルを併用した3剤併用療法の国内臨床試験において、肝硬変症例は対象となっておらず、肝硬変への安全性は確認されていない。3剤併用療法には肝硬変に対する保険適用はないことに留意すべきである。

市販後調査において副作用はほぼ全例の96.5%(3,422/3,547)、重篤な副作用は35.7%(1,265/3,547)に出現した。重篤な副作用としては、皮膚症状は72例(2.0%)のみであったが、貧血が709例(20.0%)に出現し、もともと高頻度であった16)。

また、同じく市販後調査の結果から、65歳以上の症例において重篤な副作用の発現率が投与量によって異なることが明らかとなった11)。すなわち、65歳までの症例では投与量による副作用発現率に差はみられなかったが、65歳以上の症例では2250mg/日投与例で50%、2250mg/日未満投与例で37%と報告されており、65歳以上の症例では副作用を予防するため減量投与が必要である可能性が示唆された。

【Recommendation】

- テラプレビル+Peg-IFN+リバビリン3剤併用療法では重篤な皮膚症状が生じる。皮膚症状が出現した際には軽微なものであっても必ず皮膚科専門医の診察を依頼し、重症化の可能性や外用薬・内服薬など皮膚症状の治療方針について指示を仰るべきである。テラプレビル投与継続の可否に関しても治療効果と副作用を考慮し、皮膚科医との連携のもとに決定する(エビデンスレベル2b、グレードA)。
- 貧血の進行に対してはHb値を定期的に測定し、リバビリンの減量により対処する(エビデンスレベル2b、グレードA)。
- 腎機能障害、高尿酸血症にも注意が必要である(エビデンスレベル2b、グレードA)。
- 肝硬変に対する安全性は確認されておらず、保険適用はない(グレードD)。
・ 市販後調査の結果では、65歳以上の症例では副作用を予防するため減量投与が必要である可能性が示唆された（エビデンスレベル 2b、グレード B）。

4-1-1-3. 薬剤相互作用

テラプレビルは薬物代謝酵素 CYP3A4/5 を強力に阻害することから、同じく CYP3A4/5 の基質となる併用薬剤の血中濃度を上昇させる可能性がある。また CYP3A4 によって代謝されるため、CYP3A4 を誘導する薬剤と併用した際にはテラプレビルの血中濃度が低下する可能性がある。このため、多数の薬剤が併用禁忌とされているほか、併用注意薬も多数存在する（資料 2 参照）115。添付文書を参照し、投与前によく確認することが必要である。

【Recommendation】

・ テラプレビルは薬物代謝酵素 CYP3A4/5 を強力に阻害し、またその基質となることから、多くの薬剤が併用禁忌・併用注意とされている。添付文書を参照し、投与前によく確認することが必要である（グレード B）。

4-1-1-4. 薬剤耐性

テラプレビルの耐性変異（V36, T54, R155, A156, V170）は単独投与で viral breakthrough となった症例から報告116-118されたが、3剤併用療法のウイルス学的不応例や再燃例からも報告されている119, 120。治療中のテラプレビル耐性の出現率は初回治療例で 12％、治療経験例では 22％と報告されている。また viral breakthrough、ウイルス学的不応例や再燃例の 80-90％に耐性ウイルスが検出されるという報告もある121。このような耐性ウイルスはゲノタイプ 1a で 1b よりも高率に出現する。このような耐性ウイルスの多くは治療終了後、時間の経過とともに検出されなくなっていく117, 118。

4-1-2. シメプレビル（simeprevir）

C型肝炎ウイルスの NS3-4A プロテアーゼに対する阻害剤は、分子構造の違いにより 2 群に分けられる。一つは枝分のない直鎖状構造(linear)をとる薬剤であり、もう一つは分子内に大環状構造 (macrocyclic)をもつ薬剤である。大環状の小分子化合物は、治療ターゲットとなる蛋白質に対する親和性や特異性に優れている122。テラプレビルが直鎖状の第一世代プロテアーゼ阻害剤であるのに対し、シメプレビルは初期のプロテアーゼ阻害剤の最適化過程で発見された大環状の第二世代プロテアーゼ阻害剤である123。構造の違いにより薬剤耐性プロフィールも異なることが in vitro の薬剤耐性試験により示されており、シメプレビルはテラプレビル耐性変異のうち 155 番、156 番のアミノ酸変異に対しては交叉耐性を示すが、36 番、54 番、170 番のアミノ酸変異に対しては感受性があり、一方 80 番、168 番のアミノ酸変異はシメプレビルに対してのみ耐性がある124。薬物動態試験により、シメプレビルは 1 日 1 回の投与で 24 時間後においても有効血中濃度が持続することが示されている125。シメプレビルは、ゲノタイプ 1、2、4、5、6 型の HCV に対する阻害活性を有するが、特にゲ
ノタイプ 1a・1b 型に対するウイルス増殖抑制作用が強く、ノタイプ 1 型・高ウイルス量（5.0 Log IU/ml 以上）の C 型慢性肝炎に対する Peg-IFN とリバビリンとの併用療法として、2013 年 9 月薬事承認された。

4-1-2-1. 国内第 3 相試験における治療成績

ノタイプ 1 型の C 型慢性肝炎に対するシメプレビル+Peg-IFNα+リバビリン 3 剤併用療法の臨床第 2 相試験として、日本国内では DRAGON 試験 126）（初回治療例）、海外では PILLAR 試験 127）（初回治療例）、ASPIRE 試験（前治療再燃例）が行われた。これらの試験の結果を踏まえ、第 3 相試験におけるシメプレビルの用量は、日本国内では 100mg（1日 1 回）、海外では 150mg（1日 1 回）に設定された。臨床第 3 相試験としては、日本国内では CONCERTO-1 試験 21）（初回治療例）、CONCERTO-2 試験（前治療再燃例）、CONCERTO-3 試験（前治療無効例）が施行され、その成績が報告された。日本国内での臨床試験における対象症例は、ノタイプ 1 型・高ウイルス量（5.0 Log IU/ml 以上）の C 型慢性肝炎（肝硬変を除外）で、年齢は 20〜70 歳であった。

4-1-2-1-1. 初回治療例

日本国内でおこなわれた IFN 初回治療例に対するシメプレビル併用療法の CONCERTO-1 試験 21）は、はじめの 12 週間はシメプレビル 100mg（1日 1 回）+ Peg-IFNα-2a+リバビリンの 3 剤を投与し、その後に response-guide で Peg-IFNα-2a+リバビリンの 2 剤を 12 週ないし 36 週追加投与するプロトコールで行われた。結果として、99%の症例が response-guide の基準に合致し 24 週間投与になった。SVR24 は 89%（109/123 例）であり、対照群における 57%（34/60 例）よりも有意に高率であった。CONCERTO-4 試験 23）では、Peg-IFNα-2b を使用し、治療期間も CONCERTO-1 試験と同様の response-guide で設定されたが、全例が response-guide の基準に合致し 24 週間治療となり、SVR24 は 92%（22/24 例）であった。

4-1-2-1-2. 前治療再燃例

IFN 前治療再燃例に対するシメプレビル併用療法の CONCERTO-3 試験 22）は CONCERTO-1 試験と同様の治療プロトコールで行われ、全例が response-guide の基準に合致し 24 週間治療となった。SVR24 は 90%（44/49 例）であった。同じく再燃例に対する CONCERTO-4 試験 23）では、Peg-IFNα-2b を使用し CONCERTO-3 試験 22）と同様の治療プロトコールで行われ、全例が response-guide の基準に合致し 24 週間治療となった。SVR24 は 97%（28/29 例）であった。

4-1-2-1-3. 前治療無効例

IFN 前治療無効例に対するシメプレビル併用療法の CONCERTO-2 試験 22）では、シメプレビル +Peg-IFNα-2a+リバビリンの 3 剤を 12 週投与する群（シメプレビル 12 週）と 24 週投与する群（シメプレビル 24 週）が設定された。いずれの群でも CONCERTO-1 と同様の基準で response-guide により総治療期間が設定され、24 週まで投与された症例のうちそれぞれ 96%、98%の症例が response-guide の基準に合致し総投与期間は 24 週となった。SVR24 はシメプレビル 12 週群では
51％(27/53例)、シメプレビル24週群では36％(19/53)であった。一方CONCERTO-4試験23)では、IFN前治療無効例に対してシメプレビル+Peg-IFNα-2b+リバビリンの3剤を12週投与した後にPeg-IFNα-2b+リバビリンを36週間投与し、総治療期間48週であり、SVR24は38％(10/26例)であった。

日本国内のCONCERTO-2、CONCERTO-4試験は前治療無効例を対象としたものだが、無効例を前治療の12週時点でHCV RNAが2.0LogIU/mL以上減少したpartialresponderと、それ以外のnullresponderとに層別化した解析は行われなかった。

4-1-2-2.市販後における治療成績

本邦におけるシメプレビル+Peg-IFNα+リバビリン3剤併用療法の市販後の成績が報告されている。まず、Ogawaらによるゲノタイプ1型C型慢性肝炎患者337例における治療成績の報告129)では、初回治療例、再燃例、無効例(前治療partialresponder)、無効例(前治療nullresponder)におけるSVR率は、それぞれ87.1％(162/186)、88.6％(93/105)、56.5％(13/23)、26.1％(6/23)であり、第3相試験とほぼ同様の成績が得られている。第3相試験では解析されなかった前治療partialresponderとnullresponderとの比較では、nullresponderにおいて明らかに治療成績が不良であった。また、IFNの治療効果に影響するIL28B別の解析では、初回治療例、再燃例においてIL28B TT症例ではTG/GG症例に比べて有意にSVR率が高く、シメプレビル+Peg-IFNα+リバビリン3剤併用療法においてもIL28B遺伝子多型が治療効果に影響することが示された(図2)。SVRに寄与する因子としては、治療開始4週時点におけるHCV-RNA消失(RVR)、IL28B遺伝子多型(IL28B TT)、治療歴(初回治療ないし前治療再燃)が挙げられている。IL28B遺伝子多型が治療効果に影響するという結果は他の報告からも支持されている110)。Tahataらは、初回治療例において、IL28B遺伝子多型に加えて、IL28B TG/GG症例ではRBV投与量がSVRに関与することを報告した130)。併用するPeg-IFNについては、α2aとα2bとのランダム化比較試験が行われており、有効性・安全性とともに同等であった131)。

図2シメプレビル+ Peg-IFNα+リバビリン3剤併用療法の市販後治療成績129)
(前治療への反応およびIL28B遺伝子型別)
【Recommendation】

- 市販後におけるゲノタイプ1型症例に対するシメプレビル+Peg-IFNα-2bリバビリン 3剤併用療法24週投与でのSVR率は、初回治療例・前治療再燃例に対しては87〜88%であるが、前治療無効例では不良であり、国内第3相試験とほぼ同等の結果である（エビデンスレベル2b、グレードA）。
- 前治療無効例でも、partial responderと比較してnull responderではさらにSVR率が低下する（エビデンスレベル2b、グレードA）。
- 初回治療例・前治療再燃例において、IL28B遺伝子多型は治療効果に影響する（エビデンスレベル2b、グレードA）。

副作用

CONCERT-1試験における治療完遂率は92.7%であり、有害事象で治療中止に至った症例は4.9%のみで、対照群であるPeg-IFNα-2a+リバビリン2剤併用療法における8.3%と差がなかった。
シメプレビル投与群においてビリルビン上昇が40.7%で観察されたが、AST、ALTの上昇は伴わない一過性の軽度の上昇であり、1.1〜1.5 mg/dlが25.2%、1.6〜2.5 mg/dlが14.6%、2.6〜5.0 mg/dlが0.8%であり、5.0 mg/dl超の上昇はなかった。ビリルビン上昇は、肝トランスポーターの活性阻害が原因と報告されている。ただし市販後において、本剤投与により血中ビリルビン値が著しく上昇し、肝・腎不全を併発して死亡に至った症例が3例報告されており、注意が必要である。なお、これらの症例は、治療前の血小板数が6.6万〜9.0万といずれも10万未満であった。

貧血、皮膚症、腎障害、高尿酸血症、全身倦怠感、消化器症状、および他の副作用については、種類および頻度はシメプレビル+Peg-IFN+リバビリン3剤併用療法とPeg-IFN+リバビリン2剤併用療法で同等である。貧血の頻度、程度はシメプレビル併用療法とPeg-IFN+リバビリン2剤併用療法で同等であり、シメプレビル併用療法においては、ヘモグロビン最低値が10.6 g/dl以上が29.3%、Grade 1の貧血（Hb 9.5〜10.5 g/dl）が41.5%、Grade 2の貧血（Hb 8.0〜9.4 g/dl）が29.3%であり、Grade 3（Hb 8.0 g/dl未満）の貧血はなかった。

皮膚症状は57.7%の患者に発現したがGrade 1または2であり、発現頻度、重症度、中止率は対照群と同様であった。スティーブンス・ジョンソン症候群（SJS）、薬剤性過敏症候群（DIHS）などの重篤な皮疹はなかった。

なお、企業による市販後調査において報告された重篤な副作用としては、併用されているPeg-IFN、リバビリンに関連すると推定される血球減少が大半であり、高ビリルビン血症は5.4%（85/1563）に認められた。Ogawaらの報告では、3.0mg/dl超の高ビリルビン血症を5.6%、Grade2〜3の皮疹を4.7%に認めている。また、この高ビリルビン血症には、ITPA遺伝子多型が関与することが報告されている。
シメプレビル+Peg-IFN+リバビリン 3剤併用療法では、肝トランスポーター活性の阻害により一過性に軽度のビリルビン上昇がみられることがあり（エビデンスレベル 2b、グレード A）。

その他の副作用の種類と頻度は Peg-IFN+リバビリン 2剤併用療法と同等であり、治療完遂率は高い（エビデンスレベル 2b、グレード A）。

4-1-2-4. 薬剤相互作用
シメプレビルは主に CYP3A により代謝されることから、CYP3A の阻害薬や誘導薬との併用によりシメプレビルの血中濃度に影響を与える可能性がある。特に CYP3A を強く誘導する薬剤と併用した際には代謝が促進されて血中濃度が著しく低下し、効果が減弱する可能性がある。このため多くの薬剤が併用禁忌ないし併用注意とされている（資料 2 参照）。また、シメプレビルは OATP1B1 と P 糖蛋白質を阻害するため、OATP1B1 や P 糖蛋白質を介して輸送される薬剤と併用した際に併用薬の血中濃度を上昇させる可能性があるので、添付文書を参照し、投与前によく確認することが必要である。

【Recommendation】
シメプレビルは主に薬物代謝酵素 CYP3A によって代謝され、また OATP1B1 と P 糖蛋白質を阻害することから、多くの薬剤が併用禁忌・併用注意とされている。添付文書を参照し、投与前によく確認することが必要である（グレード A）。

4-1-2-5. 薬剤耐性
前治療無効・再燃例に対する CONCERTO-2、3試験 22において、breakthrough、投与中のウィルス効果が不十分で中止基準に合致、投与終了時 HCV RNA 陽性、および投与後の再燃が認められた Failure 例を対象として NS3 プロテアーゼ領域の遺伝子変異が検討されている。Failure 例 61例のうち 59 例で遺伝子変異が検出可能であり、うち 54 例（92%）でシメプレビルに対して耐性を有する変異が検出された。そのほとんどが 168 番のアミノ酸変異（54 例中 52 例）であり、42 例は D168V を含む変異（D168V の単独変異が 35 例、混合変異・多重変異が 7 例）、10 例は D168A/H/T/E/X の単独あるいは混合変異であった。168 番のアミノ酸変異が検出されなかった 2 症例では、1 例は Q80L 単独変異、1 例は Q80K と R155K の混合変異であった。本試験の対象の 97%はゲノタイプ 1b であるが、海外の ASPIRE 試験においてもゲノタイプ 1b ではシメプレビルに対する耐性変異は D168V がほとんどを占めること、これに対してゲノタイプ 1a では主として R155K であることが報告されている 135。

海外の臨床試験では、ゲノタイプ 1a において治療開始前に Q80K の遺伝子変異があると SVR 率が低下する可能性が報告された 128, 136, 137。Q80K の遺伝子変異はゲノタイプ 1a の 23−41%で検出された。
されるため、治療効果予測因子となる可能性がある。ゲノタイプ 1b においては、Q80K の遺伝子多型は稀である。ゲノタイプ 1b においては、ほとんどが D168V 変異である。

【Recommendation】

- シメプレビル+Peg-IFN+リバビリン 3 剂併用療法が無効となった症例では、高率に耐性変異が検出される。ゲノタイプ 1b では、ほとんどの場合 D168V 変異である（エビデンスレベル 2b、グレード B）。
- ゲノタイプ 1a において治療開始前に Q80K の遺伝子多型があると SVR 率が低下する可能性がある。ゲノタイプ 1b では、同遺伝子多型は稀である（エビデンスレベル 2b、グレード B）。

4-1-3. バニプレビル（vaniprevir）

2014 年 9 月、テラプレビル・シメプレビル・アスナプレビルに続く第 4 のプロテアーゼ阻害薬として、バニプレビルが承認された。バニプレビルはシメプレビル同様、大環状構造（macrocyclic）をもち、第 2 世代プロテアーゼ阻害薬に分類される薬剤であり、ゲノタイプ 1 型、ことに 1b 型の HCV に対して強い抗ウイルス活性を持つことが in vitro において示されている。バニプレビルはゲノタイプ 1 型の C 型慢性肝炎に対して Peg-IFN α-2b・リバビリンと併用投与し、成人にはバニプレビルとして 1 回 300mg を 1 日 2 回経口投与する。初回治療例、前治療再燃例に対してはシメプレビル同様 12 週間投与を行うが、前治療無効例に対しては Peg-IFN α-2b・リバビリンと同じくバニプレビルも 24 週投与を行う点が、シメプレビルとは異なる。

4-1-3-1. 国内第 3 相試験における治療成績

ゲノタイプ 1 型の C 型慢性肝炎に対するバニプレビル+Peg-IFN+リバビリン 3 剂併用療法につき、国内ではまず第 2 相臨床試験が行われた。ここでは前治療再燃例 90 例を対象として、バニプレビル 100mg、300mg、600mg、およびプラセボ投与の 4 群に分け治療成績が検討され、その結果 300mg/回が至適投与量と決定された。この結果を踏まえ国内第 3 相試験が行われた。

4-1-3-1-1. 初回治療例

初回治療例に対する第 3 相試験の対象は 70 歳以下でゲノタイプ 1 型・高ウイルス量の C 型慢性肝炎（肝硬変は対象外）であり、はじめの 12 週間はバニプレビル+Peg-IFN α-2b+リバビリン 3 剤併用、その後 12 週間は Peg-IFN α-2b+リバビリン 2 剤併用というプロトコールで行われた。その結果、3 剤併用群の SVR24 は 83.7%(82/98)であり、対照群の 55.1%(54/98)に比べて有意に高率であった（図 3）。
図3 バニプレビル+Peg-IFNα-2b+リバビリン3剤併用療法：
国内第3相試験におけるSVR24\(^{139}\)

初回治療例の結果を背景因子別にみると、性別や年齢では大きな差はみられなかったが、
IL28B遺伝子多型ではCCでのSVR24が92.2%であったのに対し、CT/TTでは67.6%であった（図4）。

図4 バニプレビル+Peg-IFNα-2b+リバビリン3剤併用療法：
背景因子別にみたSVR24\(^{139}\)

4-1-3-1-2. 前治療再燃例

1型高ウイルス症例の前治療（IFN単独療法あるいはリバビリンとの併用療法）の再燃・ブレークスルー1例を対象とした試験も行われている。対照となった症例は25例であり、このうち23例でSVR24が達成され、SVR24は92.0%であった（図3）。25例中前治療ブレークスルー例は6例で、うち4例でSVR24が得られている。

4-1-3-1-3. 前治療無効例

1型高ウイルス量・前治療（IFN単独療法あるいはリバビリンとの併用療法）の無効例を対象とした
試験では、シメプレビルとは異なり、バニプレビルが24週間投与されるというプロトコールであった。
対象症例は42例（26-69歳）であり、前治療無効の中でもHCV-RNAが投与前値から2.0 log IU/mL以上低下したか（partial responder）、あるいは2.0 log未満の低下であったか（null responder）によって解析が行われている。その結果、前治療無効例全体におけるSVR24は61.9%（26/42）であり、
partial responderでは76.9%（10/13）、null responderでは55.2%（16/29）という成績であった（図3）。

4-1-3-2. 市販後における治療成績

21
バニプレビルについては使用経験が少なく、まとまった症例数の報告がない。前述のOgawaらの報告ではバニプレビル+Peg-IFN+リバビリン3剤併用療法を行った31例の成績を報告しているが、これによれば、初回治療例、前治療再燃例、前治療無効例(partial)、前治療無効例(null)におけるSVR24率は、それぞれ96%(21/22)、100%(6/6)、100%(2/2)、0%(0/1)であった129。

【Recommendation】
1. 国内第3相試験において、IFN初回治療例におけるバニプレビル+Peg-IFNα-2b+リバビリン3剤併用治療のSVR24は83.7%であり、対照群のPeg-IFNα-2b+リバビリン2剤併用における55.1%に比し有意に高率であった（エビデンスレベルB）。
2. 再燃あるいはブレークスルー例におけるSVR24は92.0%であった（エビデンスレベルB）。
3. IFN前治療無効例全体におけるSVR24は61.9%であり、partial responderでは76.9%、null responderでは55.2%であった（エビデンスレベルB）。

4-1-3-3. 副作用
初回治療例におけるバニプレビル+Peg-IFNα-2b+リバビリン3剤併用群では、重篤な副作用の発現が4例(4.1%)、重篤な副作用による中止が3例(3.1%)みられたものの、対照群のそれぞれ4例(4.1%)、2例(2.0%)と有意な差はなかったが、バニプレビル投与群で胃腸障害(嘔吐、悪心及び下痢)の出現頻度が高かった。これらの胃腸障害の多くは軽度または中等度であり、主に投与開始15日以内に発現した。重篤な胃腸障害(嘔吐、悪心及び下痢)の有害事象は288例中2例に認められた。再燃例ではうつによる投与中止例が1例、またバニプレビル24週投与が行われている無効例でも42例中投与中止例は1例のみであった(投与理由はALT/AST上昇)。Ogawaらによる市販後の成績でも消化器症状が全体の42%に認められ、うち2例が治療中止に至っている129。

【Recommendation】
1. 国内第3相試験においてバニプレビル群の治療完遂率は対照群と同等であったが、胃腸障害の出現頻度が高かった。市販後の成績でも消化器症状の出現頻度が高い（エビデンスレベルB）。

4-1-3-4. 薬剤相互作用
バニプレビルは主にCYP3Aによって代謝され、またOATP1B1およびOATP1B3の基質である。従って、資料2に記載されたCYP3Aの誘導薬または阻害薬やOATP1B1およびOATP1B3の阻害薬との併用によって、バニプレビルの血中濃度が低下ないし上昇する可能性があることから、これらの薬剤は併用禁忌とされている。その他、併用により、影響を与えるあるいは受ける薬剤は併用注意とされている（資料2参照）139。投与前に添付文書を参照し、よく確認することが必要である。

4-1-3-5. 薬剤耐性
バニプレビルは NS3A 領域の R155G/K/Q/W、A156T/V、D168A/G/K/T/V/Y 変異に対して耐性が生ずることが報告されている(139,141)。国内第3相試験において、初回治療例、前治療例・無効例それぞれにおいて投与前にこれらの NS3 領域遺伝子多型が存在するか否かによる解析も行われた。その結果、初回治療例における変異ウイルス検出率における SVR24 は 87.7%(57/65)であり、非検出例も含めた全症例における SVR24(83.7%;82/98)と同等であった。また、前治療例・無効例でも変異の存在によって成績が大きく変化することはなかった。以上から、もともと存在する NS3 領域の遺伝子多型は、バニプレビル+Peg-IFNα-2b+リバビリン 3剤併用療法の治療成績に大きな影響を与えないと考えられる。ただし、バニプレビル耐性として重要な D168 変異を有する症例は初回治療例の中で変異ウイルスを測定した65例中2例のみであり、また、テラプレビルやシメプレビルなどプロテアーゼ阻害薬による治療を行い、treatment failure の結果生じた NS3 領域の耐性変異を有する症例は今回の臨床試験の対象となっていない。従って、プロテアーゼ阻害剤治療不成功の結果として生じた耐性変異に対するバニプレビル+Peg-IFNα-2b+リバビリン 3剤併用療法の有効性は不明である。

【Recommendation】

- 治療前から存在する NS3 領域の遺伝子多型は、バニプレビル+Peg-IFNα-2b+リバビリン 3剤併用療法の治療成績に大きな影響を与えないと考えられる（エビデンスレベル 2b、グレード B）。
- プロテアーゼ阻害薬による治療不成功の結果として生じた耐性変異に対するバニプレビル +Peg-IFNα-2b+リバビリン 3剤併用療法の有効性は不明である（エビデンスレベル 2b、グレード B）。

4-2. IFN-free DAAs

4-2-1. ダクラタスビル（daclatasvir）・アスナプレビル（asunaprevir）

4-2-1-1. ダクラタスビル

ダクラタスビルは初めて開発され臨床応用された NS5A 阻害剤である（図1）142）。HCV の非構造蛋白領域 NS5A は、447 アミノ酸残基からなるリン酸化蛋白をコードする領域である。この領域には IFN 治療の効果に関係する Interferon sensitivity determining region（ISDR; aa2209–2248）や IFN+リバビリン治療の効果に関係する interferon/ribavirin resistance–determining region（IRRDR; aa2334–2379）が存在している。NS5A の機能については十分に判明していないが、ウイルス RNA 複製に重要な役割を果たしているものと考えられており、ことに HCV の粒子形成においてコア蛋白と NS5A 蛋白が相互作用することが推定されている。NS5A 阻害剤は低分子阻害剤であり、ウイルス増殖抑制に大きな効果が期待されている。ダクラタスビルはクラス初の高選択性の NS5A 複製複合体阻害剤であり、ピコモル濃度で効力を示すほか、種々のゲノタイプに対して作用を示す。HCV 感染者における抗ウイルス効果の検討から、ダクラタスビル 10mg 以上の内服により HCV RNA 量が顕著に減少する。
少することが報告されている。

4-2-1-2. アスナプレビル

一方、アスナプレビルはテラプレビルやシメプレビルと同様、NS3-4A 領域をターゲットとしたプロテアーゼ阻害剤である（図 1）。HCV の非構造蛋白領域 NS3-4A 蛋白は、NS3 とその補因子である NS4A より構成される非共有結合複合体である。NS3 は 70KDa の多機能蛋白であり、その N 末端 3 分の 1（アミノ酸[aa]1-180）にセリンプロテアーゼ領域を含んでいる。セリンプロテアーゼは、非構造蛋白領域 NS3-5 蛋白間の切断を順序立てて行っている蛋白質分解酵素である。プロテアーゼ阻害剤は、このセリンプロテアーゼを直接阻害することにより、ウイルスゲノムの複製やウイルス粒子形成に必要なウイルス蛋白の産生を抑制し、ウイルス増殖を強力に阻害する。第二世代のプロテアーゼ阻害剤であるアスナプレビルは、以上のような作用機序によりゲノタイプ 1a・1b、および 4 の HCV に対して強力な抗ウイルス作用を有している。成人にはアスナプレビルとして 1 回 100mg を 1 日 2 回経口投与する。

4-2-1-3. ダクラタスビル/アスナプレビル併用療法

わが国において、まず、IFN を含む治療法に不適格の末治療あるいは不耐容の患者、ならびに IFN を含む治療法で無効となった患者に対してダクラタスビル/アスナプレビル併用療法の臨床試験が行われ、その結果を受け 2014 年 7 月に IFN 不適格・不耐容症例、前治療無効例に対して承認された。続いて初回治療例、再燃例に対する臨床試験が行われ、その結果を受けて 2015 年 3 月には保険適用制限が撤廃され、ゲノタイプ 1 型慢性肝炎・代償性肝硬変症例すべてに対する使用が承認された。本療法は IFN フリーの抗ウイルス療法であり、これによって IFN の多彩な副作用は回避できる一方、薬剤耐性変異や肝障害などの副作用の問題があるため、ウイルス性肝疾患の治療に十分な知識・経験をもつ医師により、適切な適応判断がなされた上で行われることが必要である。

4-2-1-3-1. 海外での成績

他の DAAs と同様、アスナプレビル・ダクラタスビルは、いずれも単剤での効果は十分でないため 2 剤併用療法が行われる。Lok らは、米国において前治療 Peg-IFN+リバビリン併用療法で null responder であったゲノタイプ 1 型の 21 例を対象として、ダクラタスビルとアスナプレビルの併用療法を行った 11 例（group A）とダクラタスビルとアスナプレビルに Peg-IFN+リバビリン治療を併用した 10 例（group B）を比較した結果を報告している。治療期間はいずれも 24 週間であった。Group A では、11 例中 4 例が SVR になった。ゲノタイプ別ではゲノタイプ 1a では 9 例中 2 例の SVR(22.2%)であったが、ゲノタイプ 1b では 2 例も SVR になった。一方、group B では、10 例中 9 例が SVR になった。この結果から、ゲノタイプ 1a よりもゲノタイプ 1b において、ダクラタスビル/アスナプレビル併用療法が有効な治療になることが示された。

4-2-1-3-2. 国内第 3 相試験における治療成績
4-2-1-3-2-1. IFN 不適格未治療例、不耐容例、前治療無効例

本邦で IFN を含む治療法に不適格の未治療あるいは不耐容の患者、ならびに IFN を含む治療法で無効となった患者に対するダクラタスビル/アスナプレビル併用療法の第 3 相試験が行われた 20)。対象症例の背景は表 2 の通りであり、前治療無効例群 87 例、IFN を含む治療法に不耐容または不適格例群 135 例で、それぞれ年齢の中央値 60 歳、64 歳、性別（男/女）39/48、38/97、IL28B 遺伝子多型（rs12979860）(CC/CT, TT) 16/71、94/41、HCV RNA 量(Log IU/mL)の中央値 6.8、6.6 であった。Child–Pugh 分類 grade A の代償性肝硬変症例も 22 例含まれていたが、非代償性肝硬変を対象とした試験は行われていない。

表2 ダクラタスビル/アスナプレビル国内第3相試験
(IFN 不適格・不耐容例、前治療無効例)：患者背景 20)

<table>
<thead>
<tr>
<th></th>
<th>IFN を含む治療法に不適格・不耐容例</th>
<th>前治療無効例</th>
</tr>
</thead>
<tbody>
<tr>
<td>症例数</td>
<td>135</td>
<td>87</td>
</tr>
<tr>
<td>年齢、中央値[範囲]</td>
<td>64 [24–75]</td>
<td>60 [40–74]</td>
</tr>
<tr>
<td>性別、男性/女性</td>
<td>38/97</td>
<td>39/48</td>
</tr>
<tr>
<td>代償性肝硬変</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>IL28B 遺伝子多型（rs12979860）</td>
<td>CC 94 CT 40 TT 1</td>
<td>CC 16 CT 66 TT 5</td>
</tr>
<tr>
<td>HCV–RNA、中央値[SD]</td>
<td>6.6 (0.58)</td>
<td>6.8 (0.47)</td>
</tr>
<tr>
<td>Peg–IFN 不適格</td>
<td>100</td>
<td>N/A</td>
</tr>
<tr>
<td>Peg–IFN 不耐容</td>
<td>35</td>
<td>N/A</td>
</tr>
</tbody>
</table>

全症例の抗ウイルス効果では、治療開始後 4 週目の HCV RNA 陰性化率は 75.2%、12 週目 (cEVR)91.0%、24 週目または治療終了時 (EOT)92.3%、治療終了後 4 週目の HCV RNA 定量下限未満率は 88.7%、治療終了後 12 週目 (SVR12) 85.1%であり、全症例の SVR24 は 84.7%(188/222)であった。無効群、IFN(+)リパビリン療法不耐容または不適格例群それぞれにおける SVR24 は 80.5%(70/87)、87.4%(118/135)であり、代償性肝硬変症例では 90.9%(20/22)であった（図 5）。このように代償性肝硬度においても有効性が確認された。
治療成績を背景因子別にみると、まず IFN の治療効果に大きく影響を与える IL28B 遺伝子多型では、TT 群と TG/GG 群における SVR24 はそれぞれ 84.8%、84.3%であり、治療効果に差はなかっ た。また、年齢、性別、開始時の HCV RNA 量など、その他の背景因子でも治療効果は同等であっ た（図 6）。

治療終了後にウイルスの再燃を認めた症例は、無効例群、IFN(+リバビリン)併用療法不耐容または不適格例群で、それぞれ 6 例（7.9%）、11 例（8.5%）であった。治療中にウイルス量再上昇を認めた症例（viral breakthrough）は無効群、IFN(+リバビリン)療法不耐容または不適格例群でそれぞれ 10 例（11.5%）、4 例（3.0%）であった。また治療終了時 HCV RNA 隣性例がそれぞれ 1 例、2 例であった。

【Recommendation】
- ダクラタスビル/アスナプレビル併用療法は、ウイルス性肝疾患の治療に十分な知識・経験をもつ医師により、適切な適応判断がなされた上で行う（エビデンスレベル 2b、グレード A）。
- 前治療無効例および IFN(+リバビリン)療法不耐容または不適格例を対象とした ダクラタスビル/アスナプレビル併用療法の国内第 3 相試験では、全症例の SVR24 は 84.7%であった。無効
例、IFN+リバビリン療法不耐容または不適格例それぞれにおけるSVR24は80.5%、87.4%であった（エビデンスレベル2b、グレードA）。

- IL28B遺伝子多型、年齢、性別、開始時HCV RNA量などの背景因子による治療効果の差はみられなかった（エビデンスレベル2b、グレードB）。

- 海外の臨床試験において、Genotype 1aでは治療効果が減弱し、SVRは22.2%であった（エビデンスレベル2b、グレードA）。

4-2-1-3-2-2. 初回治療例、前治療再燃例

初回治療例、前治療再燃例に対してもダクラタスビルアスナプレビル併用療法の第3相試験が行われている145。本試験は、初回治療例に対してはダクラタスビルアスナプレビル併用療法とテラプレビル+Peg-IFN+リバビリン3剤併用療法の比較試験、前治療再燃例に対してはダクラタスビルアスナプレビル併用療法のみというプロトコールで行われた。対象症例の背景は表3の通りで、初回治療例119例、再燃例22例であった。初回治療例についてはテラプレビル+Peg-IFN+リバビリン3剤併用療法との比較試験として行われたため、年齢中央値は57歳と比較的若く、70歳を超える症例は含まれていない。また、代償性肝硬変（Fibrotest score F4症例）も全体の6例（5.0%）にとどまっている。

表3 ダクラタスビル/アスナプレビル国内第3相試験
（初回治療例、前治療再燃例）：患者背景

<table>
<thead>
<tr>
<th></th>
<th>初回治療例</th>
<th>前治療再燃例</th>
</tr>
</thead>
<tbody>
<tr>
<td>症例数</td>
<td>119</td>
<td>22</td>
</tr>
<tr>
<td>年齢、中央値[範囲]</td>
<td>57 [20-70]</td>
<td>65 [45-75]</td>
</tr>
<tr>
<td>性別、男性/女性</td>
<td>48/71</td>
<td>7/15</td>
</tr>
<tr>
<td>代償性肝硬変*1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>IL28B遺伝子多型（rs12979860）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>79</td>
<td>16</td>
</tr>
<tr>
<td>CT</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>TT</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HCV-RNA、中央値[SD]</td>
<td>6.84 (0.6)</td>
<td>7.01 (0.5)</td>
</tr>
</tbody>
</table>

*1 Fibrotest score F4の症例。

この試験における治療成績はおおむね良好であり、初回治療例におけるSVR12は89.1%（比較対照のテラプレビル治療群では62.2%）、前治療再燃例では95.5%であった（図7）。前治療無効例
IFN 不適格・不耐容例に対する臨床試験同様、性別、年齢、治療開始時 HCV RNA 量、IL28B 遺伝子多型でも治療成績に有意な差はみられなかった。

図7 ダクラタスビル/アスナプレビル
国内第3相試験

（初回治療例、前治療再燃例）：SVR12^{45}

4-2-1-3. 市販後における治療成績
市販後にダクラタスビル/アスナプレビル併用療法を施行した909例の成績が紹介されている^{46}。これによれば、血中 HCV-RNA 消失率は治療終了時 93%（n=210）、治療終了後 4 週 89%（n=190）、12 週 89%（n=116）と報告されており、国内第 3 相試験とほぼ同等の治療成績であった。一方、治療患者の年齢をみると、65 歳以下が 37%、66～69 歳が 15%、70 歳以上が 48%と、国内第3相試験の対象患者よりも高齢にシフトしており、高齢者でも非高齢者同等の治療成績が得られている。

4-2-1-4. 副作用
IFN 不適格・不耐容例、前治療無効群を対象とした第3相試験において重篤な有害事象は13例（5.9%)で認められた。発現頻度の高かった有害事象は、鼻咽頭炎、頭痛等であった。^{24} 臨床検査値異常として最も高頻度にみられたのは AST/ALT 上昇であった。臨床試験は、投与 12 週後までは 2 週間ごと、それ以降は 4 週間ごとに肝機能検査を施行し、Grade4 の ALT 上昇がみられた場合にはただちに投与を中止するというプロトコールで行われた。その結果、Grade 3/4 の ALT 上昇、AST 上昇（Grade 3：基準値上限の 5 倍以上 10 倍以下、Grade 4：基準値上限の 10 倍超）、それぞれ 7.2%（16 例）、5.4%（12 例）に出現した。^{20} 投与中止例は 10 例（4.5%）であった。ALT 上昇の発現時期の中央値は投与開始後 10 週であったが、最短では 4 週、最も遅い症例では 23 週に発現しており、一定の傾向はみられなかった。企業による市販後調査においても、投与開始後の日数と ALT 上昇発現との間に関連はなく、いずれの時期においても ALT 上昇が起こり得ることが確認されている。^{147} Grade 4 の ALT 上昇が出現した症例のほとんどにおいて、ALT が増加しはじめてから Grade 4 に達するまでの期間は 28 日以内であり、最も遅い症例では 5 日であった。一方、投与中止例では ALT は全例で改善し、中止例 10 例のうち 8 例で SVR が達成された。
治療再燃例を対象とした第3相試験でも、Grade 3/4のALT・AST上昇が、初回治療例ではそれぞれ15例(13%)・6例(5%)、前治療再燃例ではいずれも1例(5%)で出現した。AST/ALT上昇による投与中止例もそれぞれの群で5例(4%)、1例(5%)みられたが、これら6例全例でSVRが達成されている。

また、代償性肝硬変症例とそれ以外の症例の間で安全性に有意な差はみられなかったが、非代償性肝硬変は臨床試験の対象となっておらず、安全性が確認されていない。非代償性肝硬変症例ではダクラタスビル/アスナプレビル併用療法を行うべきではない。

なお、市販後に1例肝不全による死亡例が報告されている。70歳代の代償性肝硬変症例に対してダクラタスビル/アスナプレビル併用療法を開始したところ、投与開始後43日目にAST 1,312 IU/L、ALT 1,083 IU/Lと著しい肝障害を来たし、肝不全による死亡に至った147。このため、2015年7月にダクルインザ・スンペプラの添付文書に「重要な基本的注意」として「肝予備能に伴う肝不全」に関する注意喚起が、および「重大な副作用」として「肝不全」が追記された。

【Recommendation】

- ダクラタスビル/アスナプレビル併用療法のIFN不適格・不耐容例、前治療無効群を対象とした国内第3相試験では、Grade 3/4のAST・ALT上昇が、それぞれ7.2%(16例)、5.4%(12例)に出現し、投与中止例は10例(4.5%)であった(エビデンスレベル2b、グレードA)。
- ALT上昇の発現時期に一定の傾向はみられなかった(エビデンスレベル2b、グレードB)。
- 投与12週後までは2週間ごと、以降は4週間ごとに肝機能検査値をモニターし、Grade4のALT上昇時に投与を中止した結果、ALT値は全例で改善した(エビデンスレベル2b、グレードB)。
- 非代償性肝硬変を対象とした臨床試験は行われておらず、安全性も確認されていない。非代償性肝硬変症例では投与を行うべきではない(グレードD)。
- Child-Pugh分類grade BまたはCの症例に対する投与も禁忌である(グレードD)。

4-2-1-5. 薬剤相互作用

ダクラタスビルはCYP3A4の基質であり、アスナプレビルはCYP3AやOATP1B1および2B1の基質である。また、ダクラタスビルはP糖蛋白質、OATP1B1、IB3及びBCRPの阻害作用、アスナプレビルはCYP2D6、OATP1B1、IB3、2B1及びP糖蛋白質の阻害作用、CYP3A4の誘導作用を有する。資料2に記載されたCYP3A4の誘導薬または阻害薬、OATPの阻害薬、治療域の狭いCYP2D6の基質との併用によって、ダクラタスビル、アスナプレビルまたは併用薬の血中濃度が低下ないし上昇する可能性があることから、これらの薬剤は併用禁忌とされている。その他、併用により、影響を与えるあるいは受ける薬剤は併用注意とされている(資料2参照)148,149。投与前に添付文書を参照し、よく確認することが必要である。

4-2-1-6. 薬剤耐性変異
DAA の治療効果を大きく減弱させる遺伝子多型 (薬剤耐性変異) として、プロテアーゼ阻害剤であるアスナプレビルでは NS3-4A 領域 168 番目のアミノ酸変異 (D168A/E/V) が、NS5A 阻害剤であるダクラタスビルでは NS5A 領域 31 番目および 91 番目のアミノ酸変異 (L31M/V と Y93H) が知られている。HCV はきわめて塩基配列の多様性に富むウイルスであるため、DAA 治療前からこれらの耐性変異ウイルスを有する症例が存在する。ダクラタスビル / アスナプレビル国内第 3 相試験 (IFN 不適格・不耐容例、前治療無効群対象) では、ダイレクトシークエンス法によって治療開始前に HCV 薬剤耐性変異を検索し得た 214 例中、治療前すでに Y93H 変異、L31M/V 変異を有する症例がそれぞれ 30 例 (14.0%)、8 例 (3.7%) 存在した。治療前の NS5A 領域耐性変異有無別の治療成績を図 8A、B に示す。

図8 ダクラタスビル / アスナプレビル国内第 3 相試験 (IFN 不適格・不耐容例、前治療無効例)：
治療前の NS5A 耐性変異の有無別にみた SVR24 7
(*NS5A 耐性変異の検出にはダイレクトシークエンス法を用いた）

A. IFN(+RBV)不適格・不耐容例群

B. 前治療無効例群

IFN(+リバビリン)不適格・不耐容例群では、治療前に Y93H 変異が存在しなかった 107 例中 SVR が得られたのは 102 例であり、変異なしの症例に限ると SVR は 95.3%と良好であったが、Y93H 変異
が存在した 21 例では SVR は 10 例 (47.6%) ととまった (図 8A)。一方、前治療無効例群では治療前の Y93H 変異が存在しなかった症例での SVR は 85.7% (77/66) であったのに対し、存在した症例では 33.3% (3/9) であった。L31M/V 変異では、この変異が存在しなかった 80 例中 68 例 (85.0%) で SVR が得られたが、少数ではあるものの L31M/V 変異が存在した 6 例では SVR となったのは 1 例 (16.7%) のみであった (図 8B)。また海外の第 3 相試験 (HALLMARK-DUAL) では、治療前に 48 例 (8%) の症例で Y93 変異が存在し、これらの症例での SVR は 38% (18/48)、治療前に 27 例 (5%) の症例で L31 変異が存在し、これらの症例での SVR は 41% (11/27) であった。

また、初回治療例・前治療再燃例を対象とした第 3 相試験でも、治療前に NS5A 領域の耐性変異を有するウイルスが存在すると治療成績が大きく低下することが明らかにされている。治療前に NS5A 領域の変異が測定された 129 例のうち、ダイレクトシークエンス法によって Y93H 変異、L31I/M 変異が存在した症例はそれぞれ 18 例 (14.0%)、6 例 (4.7%) であり、両方ないしいずれか一方に変異が存在した症例は 23 例 (17.8%) であった。全く耐性変異が存在しなかった 106 例では 104 例 (98.1%) において SVR12 達成された一方で、両方ないしいずれかに変異が存在した症例における SVR12 達成は 11 例 (47.8%) にとどまっていた (図 9)。

さらに、ダクラタスビル/アスナプレビル併用療法の治療不成功例では両剤に対する多剤耐性ウイルスが出現することが報告されている (137)。すなわち、治療前には NS5A 領域の Y93 ないし L31 のみに変異があった症例において、breakthrough あるいは relapse 後に耐性変異を測定すると、NS5A 領域のみならず NS3 領域の D168 にも変異が出現する。海外の第 3 相試験 (HALLMARK-DUAL) では、治療不成功例では L31 変異が 63%、Y93 変異が 58%、NS3 の D168 変異が 92% で出现し、NS5A と NS3 の多剤耐性変異は 77% に出現していた (152)。このような NS5A と NS3 の耐性変異のうち、NS5A 領域の耐性変異が 1 年以上存続することが示されている (153)。

市販後でも治療前に耐性変異が存在すると治療成績が不良であることは確認されている。前述の市販後成績の報告では、ダクラタスビル/アスナプレビル併用療法の SVR12 に寄与する因子は、
前治療がシメプレビル+Peg-IFN+リバビリン以外であること、NS5A 領域 Y93H 定量 20%未満、HCV-RNA 6.0 LogIU/mL 未満、および AFP 5 μg/L 未満の 4 因子有意な予測因子として抽出されている（文献 146）。

In vitro の系において、Y93H と L31M/V の両方を有する NS5A 多重耐性変異ウイルスは、Y93H や L31M/V を単独で有するウイルスに比し、NS5A 阻害剤に対してより高度の耐性を有しており、加えてさらに複製能の高い高度耐性株である L31V-Q54H-Y93H 変異株が出現することも報告されている（表 4）。NS5A 阻害剤の治療歴のない症例において Y93H と L31M/V とを同時に検出することは 1%以下（ダイレクトシークエンス法）であり、NS5A 多重耐性変異は極めてまれであると想定される。しかし、ダクラタスビル/アスナプレビル併用療法の治療不成功例では Y93H や L31M/V が高頻度に同時に検出されることより、NS5A 多重耐性変異も高頻度に存在すると考えられる（文献 153）。こうした多重・多剤耐性変異ウイルスに対しては、現時点で確認された有効な治療法はないことから、現時点では、極力、多重・多剤耐性ウイルスを出現させないことが重要である。

| 表4 NS5A 領域各変異に対するダクラタスビルの耐性プロフィール |
|-------------------|-----------------|-----------------|-----------------|
| **Replicon** | **Replication Level (%) Average (SD)** | **EC_{50} (ng/mL Average (SD))** | **Fold Resistance** |
| WT | 100 | 0.0019 (0.0007) | 1 |
| L31M | 99 (23) | 0.0062 (0.0014) | 3 |
| L31V | 158 (54) | 0.053 (0.015) | 28 |
| Q54H | 83 (18) | 0.0024 (0.0003) | 1 |
| Q54N | 83 (29) | 0.0027 (0.0006) | 1 |
| Y93H | 27 (16) | 0.046 (0.018) | 24 |
| L31M-Y93H | 70 (68) | 13.5 (12.2) | 7,105 |
| L31V-Y93H | 50 (38) | 28.1 (24.7) | 14,789 |
| Q54H-Y93H | 22 (7) | 0.018 (0.005) | 9 |
| L31V-Q54H-Y93H | 189 (25) | 36.1 (7.7) | 19,000 |

【Recommendation】
● プロテアーゼ阻害剤であるアスナプレビルの耐性変異として NS3-4A 領域 D168A/E/V が、NS5A 阻害剤であるダクラタスビルの耐性変異として NS5A 領域 L31M/V と Y93H が存在する（エビデンスレベル 2b、グレード A）。
● IFN 不適格・不耐容例、前治療無効群を対象とした国内第 3 相試験では、治療前におけるダイレクトシークエンス法による検討により、L31M/V が全体の 3.7%、Y93H が 14.0%に存在した（エビデンスレベル 2b、グレード B）。
● IFN(+リバビリン)不適格・不耐容例群では、治療前の Y93H 変異なし・ありの SVR 率はそれぞれ 95.3%・47.6%であった。一方前治療無効例群では、治療前の Y93H 変異なし・ありの SVR 率は 85.7%・33.3%、L31M/V 変異なし・ありの SVR 率は 85.0%・16.7%であった（エビデンスレベル 2b、グレード B）。
初回治療例・前治療再燃例を対象とした第3相試験では、Y93/L31に全く耐性変異が存在しなかった症例では98.1%においてSVR12が達成された一方、両方ないしいずれかに変異が存在した症例におけるSVR12率は47.8%であった（エビデンスレベル2b、グレードB）。

ダクラタスビル/アスナプレビル併用療法前に耐性変異が存在すると治療成績が不良であることは市販後の成績でも確認されている（エビデンスレベル2b、グレードB）。

ダクラタスビル/アスナプレビル併用療法の治療不成功例では、NS5A領域多重耐性変異ウイルス、あるいは両剤に対する多剤耐性ウイルスが高頻度に出現する。こうした多重・多剤耐性変異ウイルスに対しては、現時点で確立された有効な治療法はないため、極力、多重・多剤耐性ウイルスを出現させないことが重要である（グレードB）。

4-2-2. ソホスブビル(sofosbuvir)/リバビリン併用療法

C型肝炎ウイルスのNS5Bには、ウイルス複製に必須であるRNA依存性RNAポリメラーゼがコードされている。NS5Bポリメラーゼに対する直接作用型抗ウイルス剤は大きく2群に分けられる。一つはHCV RNA複製の際にウイルス遺伝子に取り込まれる核酸型のNS5Bポリメラーゼ阻害剤、もう一つはNS5Bポリメラーゼ蛋白の酵素活性を阻害する非核酸型である。ソホスブビルは核酸型のNS5Bポリメラーゼ阻害剤であり、肝細胞内で活性代謝物であるウリジン三リン酸型に変換されるとHCV RNA複製の際にウイルス遺伝子に取り込まれ、RNA伸長反応を止めるchain terminatorとして作用する。ヒトDNA及びRNAポリメラーゼに対する阻害作用はない。ソホスブビルは多くのHCVゲノタイプに対し抗ウイルス活性を有しており、in vitroのレプリコン細胞を用いたアッセイでは、ゲノタイプ1a、1b、2a、2b、3a、4a、5aおよび6aに対する50%有効濃度（EC50値）はそれぞれ0.04、0.11、0.05、0.015、0.05、0.04、0.015及び0.014μmol/Lであった。

ソホスブビルは米国及び欧州をはじめとする諸外国の多くで承認販売されているが、日本国内ではまずゲノタイプ2型に対するソホスブビル/リバビリン併用療法による臨床試験が行われ、この結果をもとに2015年3月、ゲノタイプ2型C型慢性肝炎・代償性肝硬変に対するソホスブビル/リバビリン併用療法が承認された。用法・用量はソホスブビル400mgを1日1回、リバビリンと併用し12週間経口投与する。重度の腎機能障害（eGFR＜30 mL/分/1.73 m2）または透析を必要とする腎不全の患者に対しては投与禁忌である。リバビリンの投与量、副作用が発現したときの減量や中止は、リバビリンの添付文書に定められた基準を用いる。リバビリン製剤としてはコペガス・レベトールいずれの使用も承認されている。
表5 ゲノタイプ2型に対するソホスブビル/リバビリン併用療法の
海外第3相臨床試験成績

<table>
<thead>
<tr>
<th>対象患者</th>
<th>治療内容</th>
<th>SVR12 (%)</th>
<th>慢性肝炎/肝硬変 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISSION<sup>155)</sup></td>
<td>未治療</td>
<td>97</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>SOF+RBV, 12W (n=70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peg-IFN+RBV, 24W (n=67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSITRON<sup>156)</sup></td>
<td>IFN不耐容・不適格・希望せず</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>SOF+RBV, 12W (n=109)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>placebo (n=34)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VALENCE<sup>157)</sup></td>
<td>未治療</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>SOF+RBV, 12W (n=32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>placebo (n=18)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
| IFNを含む
前治療無効 | SOF+RBV, 12W (n=41) | 90 | 94 |
| | | | |
| | | | |
| FUSION¹⁵⁶⁾ | IFNを含む
前治療無効 | 86 | 60 |
| | SOF+RBV, 12W (n=36) | | |
| | SOF+RBV, 16W (n=32) | 94 | 78 |

4-2-2-1. 海外での成績（表5）
4-2-2-1-1. 初回治療例

初回治療例を対象としたELECTRON試験では、ソホスブビルを含む治療レジメンへのIFNやリバビリン併用の必要性を評価した。ゲノタイプ2型に対しては、ソホスブビル単剤12週間（10例）、ソホスブビル/リバビリン併用12週間（10例）、ソホスブビル/リバビリン併用12週間にPeg-IFNを4週、8週、12週併用（各9例、10例、11例）した5群が設定された。ソホスブビル単剤12週間のSVR率
は 60%であったのに対し、ソホスブビル/リバビリン併用の SVR 率は 100%、ソホスブビル/リバビリン併用 12 週間に Peg–IFN を併用した群でも Peg–IFN の併用期間に関わらず SVR 率は 100%であり、ゲノタイプ 2 型においてはリバビリン併用が必要であること、および Peg–IFN の併用は不要であることが示された 156)。

引き続き行われたゲノタイプ 2 型初回治療例に対する第 3 相試験ソホスブビル/リバビリン併用 12 週間と Peg–IFN+リバビリン併用 24 週間のランダム化比較試験の FISSION 試験では、ゲノタイプ 2 型に対する Peg–IFN+リバビリン併用 24 週間 (67 例) の SVR が 78%であったのに対して、ソホスブビル/リバビリン併用 12 週間 (70 例) の SVR は 97%であった 156)。POSITRON 試験ではゲノタイプ 2 型の 109 例の SVR は全体では 93%、代償性肝硬変での SVR は 94%、慢性肝炎での SVR は 92%であった 156)。VALENCE 試験では 32 例を対象としたソホスブビル/リバビリン 12 週間の併用療法であり、SVR は 90%、肝硬変 9 例の SVR は 78%であった 157)。

4-2-2-1-2. 既治療例

Peg–IFN+リバビリン治療歴のある既治療例のゲノタイプ 2 型に対する第 3 相試験については、ソホスブビル/リバビリン併用 12 週間 (36 例) あるいは 16 週間 (32 例) で再治療したランダム化試験の FUSION 試験では、SVR はそれぞれ 86% (12 週間) と 94% (16 週間) であった 156)。ソホスブビル/リバビリン併用 12 週間の代償性肝硬変での SVR は 60%、慢性肝炎での SVR は 96%、16 週間治療では代償性肝硬変での SVR は 78%、慢性肝炎での SVR は 100%であった。VALANCE 試験は 41 例を対象としたソホスブビル/リバビリン 12 週間の併用療法であり、SVR は 90%、肝硬変 9 例の SVR は 78%であった。

4-2-2-2. 国内臨床試験の成績

日本国内で行われた第 3 相臨床試験の対象症例は、20 歳以上、体重 40kg 以上で、HCV RNA が 4.0 log IU/ml 以上のゲノタイプ 2 型 C 型慢性肝炎・代償性肝硬変であり、AST, ALT が基準値の 10 倍以下、血小板数 5 万以上、アルブミン 3.0 g/dl 以上、ヘモグロビン価が男性は 11 g/dl 以上、女性は 12 g/dl 以上が組み入れ基準であった。対象症例 153 例のうち、初回治療が 90 例、既治療が 63 例、初回治療のうち IFN 適格が 80%、IFN 不適格が 6%、IFN を望まない症例が 14%、既治療例のうち前治療無効が 24%、前治療再燃・ブレークスルーが 71%、IFN 不耐用が 5%であった。ゲノタイプ 2a の 60%、ゲノタイプ 2b が 40%、平均年齢は 57 歳 (25～74)、eGFR の中央値は 85ml/min(51～209)であった。肝生検あるいは Fibroscan (＞12.5 kPa) で診断した肝硬変が 11%含まれていた。薬剤投与量は、ソホスブビル 400 mg を朝食後 1 日 1 回、リバビリンは体重換算により 600mg、800mg、または 1000mg を朝夕食後の 1 日 2 回で 12 週間投与した。

全体の SVR12 は 97%であり、初回治療の 98%、既治療の 95%で SVR12 が達成された。慢性肝炎では、全体の SVR12 は 97%、初回治療では 98%、既治療では 96%、肝硬変では全体の SVR12 は 94% (16/17)、初回治療では 100% (8/8)、既治療では 89% (8/9)と極めて高率であった（図 10）。

IFN 治療における従来の難治要因による SVR12 の低下はなく、IL28B (rs12979860) メジャー型
CC の 97% に対し、ヘテロ・マイナー型 non-CC では 94%。年齢 65 歳未満の 97% 対し 65 歳以上で 94%、HCV RNA 5.0 Log 未満の 100% 対して 5.0 Log 以上では 96% であった（図11）。

治療開始 2 週時点での HCV-RNA 陰性化（<25 IU/ml）は 97%、4 週時点では 100% であり、治療中の HCV-RNA 非陰化またはブレークスルーはなかった。SVR12 が得られなかった 5 例（初回治療 2 例、既治療 3 例）は全例が再燃であり、全体の再燃率は 3%、初回治療 2%、既治療 5% であった。治療終了 12 週以降の再燃はなく、SVR12 の全例が SVR24 になった。

【Recommendation】

- ゲノタイプ 2 型の C 型慢性肝炎・代償性肝硬変に対するソホスブビル/リバビル 12 週併用療法の SVR 率は高く、国内第 3 相試験では 95~98% である（エビデンスレベル 2b、グレード B）。
- 肝硬変、IL28B 遺伝子多型、年齢、開始時 HCV RNA 量などの背景因子による治療効果の差はみられない（エビデンスレベル 2b、グレード B）。

4-2-2-3. 副作用

日本国内第 3 相臨床試験において副作用は 73% の症例で発現したが、その 84% が軽度（grade 1）
であった。最も高頻度の副作用は鼻咽頭炎の29%であり、他には貧血が12%、頭痛が10%、全身倦怠が7%、皮膚搔痒が6%であった。Grade 4の副作用はなく、治療薬と関連したGrade 3の副作用は2例報告され、1例は入院を要した貧血、もう1例はリバビリンと関連した一過性の高ビリルビン血症であった。重篤な副作用としては前述の貧血による入院例と蜂刺傷によるアナフィラキシー1例が報告された。副作用による中止例はなかった。貧血によるリバビリン減量が20例、鼻咽頭炎による1日の休薬が1例あった。肝硬変の有無により副作用の発現頻度と重篤度に差はなかった。年齢による副作用発現頻度は全体としては同様であったが、65歳以上では貧血の発現率が26.5%と多く、ヘモグロビン値の減少が65歳未満の-1.0g/dlに対して65歳以上では-1.7g/dlであった。したがって、ヘモグロビン値の変動によりリバビリン用量を適切に調整することが必要である。

また、ソホスプビルは主に腎臓で代謝されることから、腎機能障害の程度により血漿中曝露は上昇する。軽度又は中等度腎機能障害患者におけるソホスプビル400mgの用量調節は不要であるが、重度腎機能障害及び血液透析患者においては、特に最終代謝産物GS-331007の血中濃度が上昇することから、添付文書では、重度の腎機能障害（eGFR<30mL/分/1.73m2）又は透析を必要とする腎不全の患者に対する投与は禁忌となっている。

2015年11月時点における企業による市販直後調査では、推定使用症例数17,784例中、副作用発現例数が481例（2.7%）、重篤な副作用発現例数が122例（0.69%）と報告されている。心臓関連の重篤な副作用は12件で、心不全・心室細動による死亡例が1例報告された。徐脈性不整脈は非重篤も含め3件（完全房室ブロック1例、徐脈2例）報告されている。

なお、他のDAA製剤同様、非代償性肝硬変は国内臨床試験の対象となっておらず、安全性が確認されていないことから、非代償性肝硬変において投与を行うべきではない。

【Recommendation】

- 国内第3相試験ではGrade 4の副作用はなく、副作用による投与中止例はなかった（エビデンスレベル2b、グレードB）。
- 65歳以上では貧血の頻度が26.5%、ヘモグロビン値の減少が-1.7g/dlであり、適切なリバビリン用量調整が必要である（エビデンスレベル2b、グレードB）。
- 重度の腎機能障害（eGFR<30mL/分/1.73m2）又は透析を必要とする腎不全の患者に対する投与は禁忌である（グレードD）。
- 非代償性肝硬変を対象とした臨床試験は行われておらず、安全性も確認されていないため、非代償性肝硬変症例では投与を行うべきではない（グレードD）。

4-2-2-4. 薬剤相互作用

ソホスプビルはトランスポーター（P糖蛋白質、乳癌耐性蛋白質）の基質であるため、腸管内でP糖蛋白質を誘導する薬剤と併用することでソホスプビルの血漿中濃度が低下する可能性がある。したがって、強力なP糖蛋白質誘導作用を有するリファンピシン、カルバマゼピン、フェニトイン、セイヨ...
ウオトギリソウ（セント・ジョーンズ・ワート）は併用禁忌であり、リファブチン、フェノバルビタールは併用注意薬である（資料2参照）。

一方、免疫抑制剤のシクロスポリン、タクロリムスとソホスブビルとの併用においては臨床的に意味のある影響はないとされている。また抗レトロウイルス治療薬であるエファビレンツ、エムトリシタビン、テノホビルジソプロキシルフマル酸塩、ラルテグラビル、リルピビリンとソホスブビルとの併用においても臨床的に意味のある影響はないとされている。

【Recommendation】
- ソホスブビルは P 糖蛋白質の基質であるため、P 糖蛋白質誘導作用を有するリファンピシン、カルバマゼピン、フェニトイン、セイヨウオトギリソウ（セント・ジョーンズ・ワート）は併用禁忌、リファブチン、フェノバルビタールは併用注意薬である（グレード D）。

4-2-2-5. 薬剤耐性

レプリコン含有細胞をソホスブビル存在下に継代培養することで耐性変異を検討した結果、HCV ゲノタイプに関わらず NS5B の S282T 変異が検出された。さらに S282T 変異を導入したレプリコンのアッセイにより、S282T 変異により EC50 が 2.4 〜 18.1 倍に増加した。このような in vitro アッセイの結果から、NS5B の S282T 変異はソホスブビル感受性を低下させることが示された。

一方臨床的検討では、日本国内第 3 相臨床試験において SVR12 を達成しなかった再燃例のディープシークエンス解析の結果、S282T 変異あるいは既報の核酸型 NS5B 阻害剤に関連する変異は検出されており、表現型解析においてもソホスブビルに対する耐性株はみられなかった。ゲノタイプ 2 に対するソホスブビル/リバビル併用 12 週間の海外第 3 相臨床試験の FISSION、POSITRON、FUSION のいずれにおいても SVR12 を達成しなかった再燃例から S282T 変異は検出されず、表現型解析においても耐性株はみられなかった。

【Recommendation】
- In vitro アッセイにより、NS5B 領域 S282T 変異はソホスブビル耐性を呈することが確認されている（グレード A）。
- 臨床サンプル解析では、国内・海外第 3 相試験で SVR を達成しなかった例から S282T 変異は検出されず、表現型解析においてもソホスブビル耐性はみられなかった（エビデンスレベル 2b、グレード B）。

4-2-3. ソホスブビル/レジパスビル（ledipasvir）配合剤

NS3/4A、NS5A、NS5B を標的とした DAA が開発され、IFN フリー DAA 併用療法の臨床試験が多数行われている中で、NS5A 阻害剤はいずれのレジメンにも含まれるキードラッグである。NS5A は 447 アミノ酸からなるリン酸化蛋白質であり、酵素活性を持たないが、HCV 増殖、粒子形成には必須であり、NS5A 阻害剤は NS3 阻害剤よりも 10 〜 1000 倍強力に HCV 増殖を抑制する。NS5A 阻害剤
であるレジパスビルは、ピコモルという低濃度でHCV増殖を抑制する効果があり、そのEC₅₀はゲノタイプ1a型では31ピコモル、1b型では4ピコモルである。ソホスブビル/レジパスビル配合剤は、米国及び欧州をはじめとする諸外国の多くで承認販売されているが、日本国内で行われたゲノタイプ1型に対する臨床試験の結果をもとに本邦でも承認申請され、2015年7月にゲノタイプ1型のC型慢性肝炎・代償性肝硬変に対して承認された。用法・用量はソホスブビル400mgとレジパスビル90mgの固定用量配合剤を1日1回12週間経口投与する。リバビリンは併用しない。重度の腎機能障害(eGFR < 30 mL/分/1.73 m²)または透析を必要とする腎不全の患者に対しては投与禁止である。

4-2-3-1. 海外での成績（表6）

海外で行われた第3相臨床試験、ION試験では、ソホスブビル400mgとレジパスビル90mgの固定用量配合剤を用いて、リバビリン併用の必要性や最適治療期間の検討が行われた。ION-1試験は初回治療865症例を対象とし、ソホスブビル/レジパスビル配合剤の12週ないし24週治療、およびリバビリン併用の有無で4群にランダム化した試験である。リバビリン併用なしの12週治療群のSVRは99%、リバビリン併用ありの12週治療群のSVRは97%、リバビリン併用なしの24週治療群のSVRは98%、リバビリン併用ありの24週治療群のSVRは99%であった。ION-3試験は肝硬変ではない初回治療647例を対象とし、ソホスブビル/レジパスビル配合剤8週治療にリバビリン併用の有無による2群、およびリバビリン併用なしの12週治療の合計3群にランダム化した試験である。リバビリン併用なしの12週治療群のSVRは94%、リバビリン併用ありの8週治療群のSVRは93%、リバビリン併用なしの12週治療群のSVRは95%であった。ION-2試験は、Peg-IFN+リバビリン併用療法の既治療440例を対象とし、ソホスブビル/レジパスビル配合剤の12週なし24週治療、およびリバビリン併用の有無による4群にランダム化した試験である。対象の20%が代償性肝硬変症例であった。リバビリン併用なしの12週治療群のSVRは94%、リバビリン併用ありの12週治療群のSVRは96%、リバビリン併用なしの24週治療群のSVRは99%、リバビリン併用ありの24週治療群のSVRは99%であった。肝硬変がない症例のSVRが98%であったものの対し肝硬変では92%であり、肝硬変においては12週治療のSVR（リバビリン併用なし86%、リバビリン併用あり82%）よりも、24週治療のSVR（リバビリン併用なし99%、リバビリン併用あり99%）が高率であった。

4-2-3-2. 国内臨床試験の成績（図12）

日本国内で行われた第3相臨床試験は、20歳以上、体重40kg以上で、HCV RNAが5.0 log IU/ml以上のゲノタイプ1のC型慢性肝炎・代償性肝硬変を対象とした。対象症例341例のうち、初回治療が166例、既治療が175例であり、そのうちプロテアーゼ阻害剤を含む治療歴のある症例が40例であった。ゲノタイプ1a型・1b型がそれぞれ3%・97%、平均年齢は59歳、肝生検あるいはFibroscan（＞12.5 kPa）で診断した肝硬変が22%含まれていた。
表6 ゲノタイプ1型に対するソホスブビル/レジパスビル併用療法の
海外第3相臨床試験成績

<table>
<thead>
<tr>
<th>対象患者</th>
<th>治療内容</th>
<th>肝硬変(%)</th>
<th>SVR12(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION-1 未治療</td>
<td>SOF/LDV, 12W (n=214)</td>
<td>16</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>SOF/LDV+RBV, 12W (n=217)</td>
<td>15</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>SOF/LDV, 24W (n=217)</td>
<td>15</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>SOF/LDV+RBV, 24W (n=217)</td>
<td>17</td>
<td>99</td>
</tr>
<tr>
<td>ION-2 IFNを含む前治療再燃・無効</td>
<td>SOF/LDV, 12W (n=109)</td>
<td>20</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>SOF/LDV+RBV, 12W (n=111)</td>
<td>20</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>SOF/LDV, 24W (n=109)</td>
<td>20</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>SOF/LDV+RBV, 24W (n=111)</td>
<td>20</td>
<td>99</td>
</tr>
<tr>
<td>ION-3 未治療の慢性肝炎</td>
<td>SOF/LDV, 8W (n=215)</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>SOF/LDV+RBV, 8W (n=216)</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>SOF/LDV, 12W (n=216)</td>
<td>0</td>
<td>95</td>
</tr>
</tbody>
</table>

薬剤投与量は、ソホスブビル400mgとレジパスビル90mgの固定用量配合剤を1日1回12週間経口投与するリバビリン非併用群と、リバビリンを体重換算により600mg、800mgまたは1000mg朝夕食後の1日2回で併用するリバビリン併用群の2群にランダム割り付けした。

全体のSVR12は99%であり、リバビリン併用なしでは100%、リバビリン併用ありでは98%であった。

初回治療例のSVRは、リバビリン併用なしでは100%、リバビリン併用ありでは96%、既治療例のSVRはリバビリン併用なしで100%、リバビリン併用ありで100%であった。代償性肝硬変例においてもSVRは、リバビリン併用なしで100%、リバビリン併用ありで97%であった。IL28B(rs12979860)ヘテロ・マイナー型non-CCでもSVRは、リバビリン併用なしで100%、リバビリン併用ありで98%であった。

プロテアーゼ阻害剤を含む治療歴のある症例40例では全例がSVRとなった。SVRが得られなかったのは治療早期に中止した2例と、治療終了後に再燃した1例のみであった。再燃した1例は、リバビリン併用群に割りつけられた未治療で肝硬変のない55歳の女性であり薬剤アドヒアランスは良好であったが、治療終了後4週時点でHCVRNAが再出現した。本症例では治療開始前および再燃時点でNS5AのY93H変異を有していた。

本臨床試験の結果に基づき、リバビリンを併用しないソホスブビル/レジパスビル配合剤12週間治療がゲノタイプ1型のC型慢性肝炎・代償性肝硬変に対して承認された。
図12 デンタイプ1型・C型慢性肝炎・代償性肝硬変に対するソホスブビル/レジパスビル12週併用療法の治療効果
（国内第3相臨床試験）

【Recommendation】
- デンタイプ1型のC型慢性肝炎・代償性肝硬変に対するソホスブビル/レジパスビル配合剤の12週間治療のSVR率は高く、国内第3相試験では100%である（エビデンスレベル2b、グレードB）。
- 肝硬変、IL28B遺伝子多型、年齢、開始時HCV RNA量などの背景因子による治療効果の差はみられない（エビデンスレベル2b、グレードB）。

4-2-3-3. 副作用
日本国内第3相臨床試験において、副作用中止はいずれもリバビリン併用あり群の2例であり、1例は皮疹で中止し、1例は心停止による死亡例であった166)。死亡例は肝硬変で併存疾患（サルコイドーシス、糖尿病、肺線維症）、脾摘の既往もあり、有害事象発生時にウイルス性消化管感染症を併発していた。重篤な副作用はいずれもリバビリン併用あり群の2例であり、1例は上記の心停止による死亡例、もう1例は急性心筋梗塞であった。リバビリン併用なし群の副作用は65%の症例で発現した。最も高頻度の副作用は鼻咽頭炎の29%であり、他には頭痛が7%、全身倦怠が5%、皮膚搔痒が4%であった。

2015年11月時点における企業による市販直後調査では、推定使用症例数9,423例中、副作用発現例数152例（1.6%）、重篤な副作用発現例数46例（0.49%）と報告されている。重篤な副作用のうちもっとも高頻度に認められたのは腎機能障害（7件）で、次いで期外収縮（4件）であった。急性肝不全・急性腎不全による死亡例が1例報告されている167)。

【Recommendation】
- 国内第3相試験では、リバビリン併用群において死亡例1例を含む副作用中止が1.2%、重篤な副作用が1.2%認められたが、リバビリン併用のないソホスブビル/レジパスビル配合剤12週間治療では、副作用による投与中止例はなく、重篤な副作用もなかった（エビデンスレベル2b、グレードB）。
非代償性肝硬変を対象とした臨床試験は行われておらず、安全性も確認されていないため、非代償性肝硬変症例では投与を行うべきではない（グレードD）。

4-2-3-4. 薬剤相互作用

ソホスブビルおよびレジパスビルはトランスポーター（P糖蛋白質、乳癌耐性蛋白）の基質であるため、腸管内でP糖蛋白を誘導する薬剤と併用することで血漿中濃度が低下する可能性がある。したがって、強力なP糖蛋白質誘導作用を有するリファンピシン、カルバマゼピン、フェニトイン、セイヨウオトギリソウ（セント・ジョーンズ・ワート）は併用禁忌であり、リファブチン、フェノバルビタールは併用注意薬である。また、胃内pHが上昇するとレジバスビルの溶解性が低下し、血漿中濃度が低下するため、水酸化アルミニウム、水酸化マグネシウムなどの制酸剤、H2受容体拮抗剤、プロトンポンプ阻害剤は併用注意薬である。一方レジバスビルのP糖蛋白質や乳癌耐性蛋白に対する阻害作用によりジゴキシン、ロバスタチン、テノホビルの血漿中濃度が上昇するため、これらの薬剤は併用注意薬である（資料2参照）。

海外の市販後において、ソホスブビルとDAA製剤に加えてアミオダロンの併用投与により徐脈性の不整脈をきたした9症例が報告されている。ソホスブビル/レジバスビル配合剤が3例、ソホスブビル/ダクラタスビル併用が5例、ソホスブビル/シメプレビル併用が1例であった。これらのうち7例ではβブロッカーが併用されていた。6例では治療開始後24時間以内、残りの3例では2から12日以内に発症し、1例が心停止により死亡、3例がペースメーカー植え込みを要した。ソホスブビル/レジバスビル配合剤とアミオダロンとの相互作用の詳細や徐脈発現の機序は不明であるが、その併用は推奨できない。

【Recommendation】

- P糖蛋白質誘導作用を有するリファンピシン、カルバマゼピン、フェニトイン、セイヨウオトギリソウ（セント・ジョーンズ・ワート）は併用禁忌、リファブチン、フェノバルビタールは併用注意薬である（グレードD）。
- 制酸剤、H2受容体拮抗剤、プロトンポンプ阻害剤はレジバスビルの血漿中濃度を低下させるため併用注意薬である（グレードD）。
- ジゴキシン、ロバスタチン、テノホビルは、レジバスビルのP糖蛋白質や乳癌耐性蛋白に対する阻害作用により血漿中濃度が上昇するため併用注意薬である（グレードD）。
- ソホスブビル/レジバスビル配合剤とアミオダロンの併用投与により徐脈性の不整脈をきたした症例が報告されているため、アミオダロン投与中の症例に対する投与は推奨できない（グレードD）。

4-2-3-5. 薬剤耐性

レプリコン含有細胞をレジバスビル存在下に継代培養することで耐性変異を検討した結果、NS5A
の Y93H 変異が検出された。さらに Y93H 変異を導入したレプリコンのアッセイにより、同変異により EC50 が 3310 倍に増加した。このような in vitro アッセイの結果から、NS5A の Y93H 変異はレジパスビル感受性を低下させることが示された。その他の NS5A 変異を導入したレプリコン細胞では、L31M、P32L では EC50 が 2.5-10 倍に増加、L31I、L31V では EC50 が 10-50 倍に増加、P58D 変異では EC50 が 100-1000 倍に増加した。これからの NS5A 変異レプリコンは、ソホスブビルに対しては感受性であった。またソホスブビルに対して耐性を示す S282T 変異レプリコンは、レジパスビルに対して感受性を示した。

臨床的検討では、日本国内第 3 相臨床試験において検出感度 1%のディープシークエンス解析により 76 例 (22%) で治療開始前に NS5A 変異が検出されたが、SVR12 を達成しなかったのは治療前に Y93H を有していた 1 例のみであった (SVR12 は 99%)。SVR12 を達成しなかった 1 例のディープシークエンス解析の結果、治療前および治療終了後 4 週時点で Y93H 変異が検出されたが、その他の NS5A 変異、および NS5B の S282T 変異は検出されなかった。なお、この試験の治療対象には NS5A 阻害剤の既治療例は含まれておらず、上記の治療開始前の NS5A 変異例に対するソホスブビル/レジパスビルの治療効果は、あくまでも治療によって惹起されたものではなく治療前から存在する HCV-RNA の NS5A 変異（遺伝子多型）例に対するものであることに注意する必要がある。即ち、ダクラタスビル/アスナプレビル併用療法の非著効例で惹起された NS5A 多重耐性変異についてのソホスブビル/レジパスビルの治療効果については、現時点で明らかでない。

【Recommendation】

- In vitro アッセイにより、NS5A 領域 Y93H 変異はレジパスビル耐性を呈することが確認されている（グレード A）。
- 国内第 3 相臨床試験では、NS5A 阻害剤の治療歴のない症例において治療開始前に Y93H 変異を有しても高率に SVR が達成された（エビデンスレベル 2b、グレード B）。
- ダクラタスビル/アスナプレビル併用療法の非著効例で惹起された NS5A 多重耐性変異についてのソホスブビル/レジパスビルの治療効果については、現時点で明らかでない（グレード C）。

4-2-4. オムビタスビル (ombitasvir)・パリタプレビル (paritaprevir)・リトナビル (ritonavir) 配合錠

オムビタスビルは NS5A 阻害剤である。HCV レプリコン細胞において HCV ゲノタイプ 1a 及び 1b に由来するレプリコン複製を阻害し、50%有効濃度 (EC50 値) はそれぞれ 14.1 及び 5.0 pmol/L であった。パリタプレビルは HCV 遺伝子にコードされるタンパク質のプロセッシングをつかさどる NS3/4A プロテアーゼの阻害剤である。HCV レプリコン細胞においてゲノタイプ 1a 及び 1b に由来するレプリコン複製を阻害し、50%有効濃度 (EC50 値) はそれぞれ 1.0 及び 0.21 nmol/L であった。パリタプレビルは主としてチトクローム P450 3A4 (CYP3A4) により代謝される。オムビタスビルとパリタ
プレビルの併用により、HCV ゲノタイプ 1 レプリコン細胞において、検討したほとんどの濃度で相加的ないし相乗的な効果を示した。

リトナビルは、プロテアーゼ阻害剤に属する抗 HIV 薬として開発された。強力な CYP3A4 阻害作用によって他のプロテアーゼ阻害剤の代謝を阻害し、結果として血中濃度の上昇と半減期の延長が得られる（ブースト効果）。リトナビルはレプリコン細胞において抗 HCV 活性を示さず、またパリタプレビルの抗 HCV 活性に影響を与えない。しかしながら、このブースト効果を利用しパリタプレビルの曝露量を高めるため、リトナビルが併用される。

4-2-4-1. 国内臨床試験の成績

日本国内で行われた HCV ゲノタイプ 1b に対する第2相臨床試験の成績を示す。パリタプレビルの投与量は 100mg 群と150mg 群を設定し、投与期間も12 間隔群と24 間隔群での4 群の比較試験として行われた。対象は 18〜75 歳の日本人ゲノタイプ 1b 型の HCV 患者で、①既治療のペグインタフェロン＋リバビリン併用療法で無反応例又は部分反応例の患者、②スクリーニング時の血漿 HCV RNA 量が 10,000 IU/mL を上回る患者、③肝硬変の認められない患者、④HIV または B 型肝炎ウイルス非感染患者、⑤HCV 以外に肝疾患に原因のない患者であった。投与方法は①オムビタスビル 25mg/パリタプレビル 100mg/リトナビル 100mg の12 間隔投与、②オムビタスビル 25mg/パリタプレビル 150mg/リトナビル 100mg の12 間隔投与、③オムビタスビル 25mg/パリタプレビル 100mg/リトナビル 100mg の24 間隔投与、④オムビタスビル 25mg/パリタプレビル 150mg/リトナビル 100mg の24 間隔投与、以上の4 群で行われた。それぞれの群のSVR24 率は、①100%(18/18)、②88.9%(16/18)、③100%(19/19)、④100%(18/18)であり、いずれも高い治療効果が得られた(図13)。この結果をもとに、投与薬はオムビタスビル 25mg、パリタプレビル 150mg、リトナビル 100mg、投与期間は 12 間隔と設定され、国内第3相臨床試験が行われた。

国内第3相臨床試験(GIFT-II study)は、HCV ゲノタイプ 1b に感染した日本人で、HCV RNA 10,000 IU/mL 以上、年齢 18〜75 歳の慢性肝炎（非肝硬変）または代償性肝硬変症例を対象とした
非肝硬変症例(321例)ではオムビタスビル25mg、パリタプレビル150mg、リトナビル100mgの12週間投与を行う群(215例)とプラセボを12週間投与後に実薬を12週間投与する群(106例)に分ける二重盲検試験で行われた。一方 Child-Pughスコア6以下の代償性肝硬変症例(42例)は、非盲検で実薬12週間投与が行われた。治療成績(SVR12)は、非肝硬変症例の実薬群では94.9％(204/215)、プラセボ→実薬群では98.1％(104/106)、代償性肝硬変症例の実薬群では90.5％(38/42)であった(図14)。年齢、性別、治療開始時のHCV RNA量、IL28B遺伝子多型、過去のインターフェロン治療の有無などは治療効果に関係しなかった。
薬中止により速やかに血圧が回復し、浮腫も消失したことから、リトナビルの CYP3A4 阻害作用によりカルシウム拮抗薬の曝露量が増加した可能性が示唆されている。無尿例ではやはり服薬開始 2 日目に尿量減少・浮腫が出現しており、肺水腫例では服薬開始から 25 日目に発熱、29 日目に咳・呼吸困難が出現し肺水腫と診断されている。この 2 例では血圧低下は確認されていないものの、いずれもカルシウム拮抗薬を服用している症例であった。第 3 相試験において、浮腫関連の有害事象は全体で 24 例に認められているが、このうち 22 例(92%)においてカルシウム拮抗薬が併用されている。逆に浮腫関連の有害事象は、カルシウム拮抗薬の非使用例における頻度は 0.7% (2/279) であったが、カルシウム拮抗薬併用例では26.2% (22/84) と高率であった169)。オムビタスビル・パリタプレビル・リトナビル配合錠の添付文書では、リトナビル錠の添付文書上併用禁忌とされているアゼルニジピンが併用禁忌となっており、その他のカルシウム拮抗薬は併用注意とされている170)。以上より、オムビタスビル・パリタプレビル・リトナビル配合錠とカルシウム拮抗薬の併用は推奨されない。併用せざるを得ない場合にはカルシウム拮抗薬の用量を減量する。

企業による市販直後調査によりオムビタスビル・パリタプレビル・リトナビル配合錠とカルシウム拮抗薬の併用による死亡例が報告されている。この症例は高血圧、糖尿病性腎症およびクリオグロビン血症を伴うネフローゼ症候群を有し、ニフェジピン 80mg が投与されていたが、減量されることなくオムビタスビル・パリタプレビル・リトナビル配合錠が開始され、翌日より血圧低下が出現した。6 日目に本剤が中止されたが、腎不全・多臓器不全を併発して死亡に至った172)。

なお、他の DAA 製剤同様、非代償性肝硬変は国内臨床試験の対象となっておらず、安全性が確認されていないことから、非代償性肝硬変に対して投与を行うべきではない。ことに、欧米においてもともと進行した肝硬変を有している症例へのヴィキラ・パック（オムビタスビル・パリタプレビル・リトナビル配合錠およびダサブリール併用）使用により肝不全など重篤な肝障害が頻発したことから、FDA は 2015 年 10 月、Child–Pugh 分類 grade B および C へのヴィキラ・パックの投与を禁忌（contraindicated）とする通達を出した。これに伴い、本邦でも Child–Pugh B および C 症例へのオムビタスビル・パリタプレビル・リトナビル配合錠投与投与は禁忌とされている。

【Recommendation】
● 国内第3相試験において、カルシウム拮抗薬併用例の 26.2%で浮腫関連有害事象が生じ、一部の症例では、低血圧、無尿、肺水腫といった重篤な副作用を認めた（エビデンスレベル 2b、グレード B）。
● オムビタスビル・パリタプレビル・リトナビル配合錠とカルシウム拮抗薬の併用は推奨されない。併用せざるを得ない場合にはカルシウム拮抗薬の用量を減量する（グレード D）。
● 非代償性肝硬変を対象とした臨床試験は行われておらず、安全性も確認されていないため、非代償性肝硬変症例では投与を行うべきではない（グレード D）。
● 非代償期に至っていない Child–Pugh 分類 grade B に対する投与も禁忌である（グレード D）。
4-2-4-3. 薬剤相互作用

オムビタスビルはアミド加水分解を経由し酸化的に代謝されるとともに、P糖蛋白(P-gp)の基質である。パリタプレビルはP-gp、乳癌耐性タンパク（breast cancer–resistance protein; BCRP）、有機アノトランスポーター（OATP1B1/1B3）の基質であり阻害剤である。リトナビルは主にCYP3A4/5で代謝される。またリトナビルはP-gpの基質であり阻害剤である。さらにCYP3A4及びBCRPの阻害作用を有する。従って、CYP3A、P-gp、BCRP、OATP1B1/1B3を基質とする薬剤との併用はこれらの薬剤の血中濃度を上昇させるおそれがあるため、用量調節や十分な観察が必要である。このためパリタプレビル、リトナビルの血中濃度を下げる薬剤と併用薬自体の血中濃度を上げる薬剤があり、資料2に示す薬剤が併用禁忌薬・併用注意薬となっている。

カルシウム拮抗剤はCYP3A4基質であり、リトナビルのCYP3A4阻害作用によりカルシウム拮抗剤の血中濃度が上昇する可能性がある。オムビタスビル・パリタプレビル・リトナビル配合錠の添付文書によれば、アムロジピン5mg単回投与時のAUCは本剤併用により2.572（90%信頼区間 2.312–2.862）倍に上昇する（170）。従って上記の通り、オムビタスビル・パリタプレビル・リトナビル配合錠とカルシウム拮抗薬をやむを得ず併用せざるを得ない場合にはカルシウム拮抗薬の用量を減量する。

【Recommendation】

- オムビタスビルはP糖蛋白の基質であり、パリタプレビルはP糖蛋白、乳癌耐性タンパク、有機アノトランスポーターの基質であり阻害剤である。リトナビルはP糖蛋白の基質でありとともに阻害剤であり、CYP3A4及びBCRPの阻害作用を有する（グレードA）。

- CYP3A、P-gp、BCRP、OATP1B1/1B3を基質とする薬剤との併用はこれらの薬剤の血中濃度を上昇させるおそれがあるため、用量調節や十分な観察が必要である（エビデンスレベル2b、グレードB）。

4-2-4-4. 薬剤耐性

レプリコン細胞を用いてパリタプレビルの耐性変異を検討した結果（3）では、NS3領域のD168A/V変異によりEC50が野生型に対して27〜159倍に増加した。さらにY56HとD168A/V変異の組み合わせでは、EC50が700〜2472倍に増加した。また同様にオムビタスビルの耐性変異を検討した結果（4）では、NS5A領域のL31F/V変異によりEC50が8〜10倍に増加した。またY93Hでは77倍に増加し、Y93HとともにL28M、R30Q、L31MあるいはL31Vの変異があるとEC50が142〜12328倍に増加した。

オムビタスビル・パリタプレビル・リトナビル配合錠の12週間投与における効果は、NS5A領域にY93変異があると低下する。治療開始時NS5A領域のY93変異がない症例では99.0%（301/304）のSVR12率であったが、Y93変異がある症例では83.0%（39/47）へと低下した（図15）（171）。

47
従って、オムビタスビル・パリタプレビル・リトナビル配合錠による治療を行う前には、極力 Y93 変異を測定し、変異がないことを確認する。一方、NS3 領域の D168、また NS5A 領域の L31 のアミノ酸変異の治療開始時における有無は、治療効果には関係しなかった。そのほかの NS3 領域、NS5A 領域のアミノ酸においても治療効果に関係する変異は認めなかった。

国内第3相試験でウイルス学的治療不成功例（ブレイクスルーないし再燃）であった 11 例における治療前後のウイルス学的解析の結果を表に示す（表 7）。

![図15 ゲノタイプ 1b 型・C 型慢性肝炎・代償性肝硬変に対するオムビタスビル/パリタプレビル/リトナビル 3 剤併用療法の治療効果：治療前の NS5A 耐性変異の有無別にみた SVR12（国内第 3 相臨床試験）](image)

表7 ウイルス学的治療不成功例における治療前後の薬剤耐性関連変異の推移
（国内第 3 相臨床試験）

<table>
<thead>
<tr>
<th>症例</th>
<th>治療不成功の原因</th>
<th>NS3</th>
<th>NS5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ブレイクスルー</td>
<td>baseline</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>治療不成功時</td>
<td>Y56H+D168V</td>
<td>Y93H</td>
</tr>
<tr>
<td>2</td>
<td>再燃</td>
<td>baseline</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>治療不成功時</td>
<td>Y56H+D168V</td>
<td>Y93H</td>
</tr>
<tr>
<td>3</td>
<td>再燃</td>
<td>baseline</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>治療不成功時</td>
<td>D168D/V</td>
<td>Y93H</td>
</tr>
<tr>
<td>4</td>
<td>再燃</td>
<td>baseline</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>治療不成功時</td>
<td>D168V</td>
<td>Y93H</td>
</tr>
<tr>
<td>5</td>
<td>再燃</td>
<td>baseline</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>治療不成功時</td>
<td>D168V</td>
<td>P58S+Y93H</td>
</tr>
<tr>
<td>6</td>
<td>再燃</td>
<td>baseline</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>治療不成功時</td>
<td>none</td>
<td>R30Q+Y93H</td>
</tr>
<tr>
<td>7</td>
<td>ブレイクスルー</td>
<td>baseline</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>治療不成功時</td>
<td>Y56H, D168V</td>
<td>P58S, Y93H</td>
</tr>
<tr>
<td>8</td>
<td>再燃</td>
<td>baseline</td>
<td>none</td>
</tr>
</tbody>
</table>

48
NS3 領域の耐性関連変異は、投与開始前には認めなかったが、治療不成功が確認された時点で10例でD168 変異が存在し、うち5例にY56 変異との重複変異を認めた。NS5A 領域については、投与開始前ではY93 変異を8例に認め、3例は変異を認めなかったが、治療不成功時には、11例中10例でY93 変異の単独またはY93 変異を含む重複変異が存在し、残り1例ではL31 単独変異を認めた。なお、前述の通り、レプリコンの系において、NS3 領域におけるD168A/V とY56H の重複変異、ならびにNS5A 領域におけるY93H とL28M、R30Q、L31M、P58S の重複変異では、D168 単独変異やY93H 単独変異に比し高度の耐性を有することが示されている。

【Recommendation】

● オムビタスビル・パリタプレビル・リトナビル配合錠の12週間投与における効果は、NS5A 領域にY93 変異があると低下する。治療不成功例では多重・多剤耐性変異ウイルスが高頻度に出現する（エビデンスレベル 2b、グレード A）。

● このような多重・多剤耐性変異ウイルスの出現を防ぐため、治療前にNS5A 領域のY93 変異を測定し、変異が存在しないことを確認することが推奨される（グレード B）。

5. 慢性肝炎に対する治療戦略
5-1. ゲノタイプ 1 型
5-1-1. 基本的治療方針

ゲノタイプ 1 型症例に対して現在一般臨床で使用できるのは、IFN をベースとした抗ウイルス療法（IFN-based antiviral therapy）であるPeg-IFN(IFN)をリバビリン±プロテアーゼ阻害剤（シメプレビル、パニプレビル、テラプレビル）、ならびに IFN フリーのDAAs combination（IFN-free antiviral therapy）であるダクラタスビル/アスナプレビル併用、ソホスブビル/レジパスビル併用、およびオムピタスビル/パリタプレビル/リトナビル併用である。一方、抗ウイルス治療を行わない場合、ALT が異常値であれば、肝庇護療法（SNMC、UDCA）やPeg-IFN（IFN）少量投与を行う。また、ゲノタイプ 1 型と2 型の混合感染の治療は、1型に準じた治療をおこなう。

なお、本ガイドラインでは、既治療例であっても、前回治療でリバビリンが使用されずPeg-IFN(IFN)単独治療が行われた症例は、前回治療成績が効果予測因子とならないため、既治療ではない初回治療として扱う。

5-1-1-1. IFN-based antiviral therapy

2004年、わが国においてPeg-IFN+リバビリン併用療法が使用可能となり、Peg-IFNにリバビリンを
併用することで治療効果は向上したが、貧血などの副作用が加わった。その後、治療への反応性に合わせて治療期間を変更するレスポンスガイドセラピー（response-guided therapy）を中心に、個々の患者における治療の最適化が図られるようになった。2011年にはわが国で初めてのDAA製剤（第1世代プロテアーゼ阻害剤）であるテラプレビルとPeg-IFN+リバビリンとの3剤併用療法が使用可能となった。Peg-IFN+リバビリンにテラプレビルを併用することで治療期間が48週（72週）から24週に短縮され、副作用の問題はあるものの、治療効果は明らかに向上した。そして、2013年11月には、第2世代プロテアーゼ阻害剤であるシメプレビルがゲノタイプ1型に対して保険認可された。シメプレビル+Peg-IFN+リバビリン3剤併用療法は、テラプレビル+Peg-IFN+リバビリン3剤併用療法に比し、治療期間は24週と同じであるが、1日1回の内服であること、わが国の初回治療例に対する臨床試験（DRAGON試験20、CONCERTO-1試験21、CONCERTO-4試験23）でのSVRが80〜90%と高率であったこと、また副作用面においてもプラセボ群のPeg-IFN+リバビリンとほぼ同等であった。さらに、2014年9月には、同じく第2世代プロテアーゼ阻害剤であるバニプレビルがゲノタイプ1型症例に対して保険認可された。わが国におけるバニプレビル+Peg-IFN+リバビリン3剤併用療法の初回治療例に対する臨床試験でのSVRは83.7%と高率であり、また副作用についてもプラセボ群のPeg-IFN+リバビリンとほぼ同等であった。以上より、現在、シメプレビル+Peg-IFN+リバビリン3剤併用療法がIFN-based therapyの第一選択となっている。

5-1-1-2. IFN-free antiviral therapy

2014年7月、はじめてのIFNフリーDAAスcombinationであるダクラタスビル/アスナプレビル併用療法が保険認可となった。当初、ダクラタスビル/アスナプレビル併用療法は、IFN不適格・不耐用例ならびにIFN無効例ののみの保険適用であったが、2015年3月より、初回治療例、前治療再療例に対しても保険適用が追加承認された。これにより、ダクラタスビル/アスナプレビル併用療法は、ゲノタイプ1型の全ての慢性肝炎と代償性肝硬変に使用可能となった。わが国におけるダクラタスビル/アスナプレビル併用療法の初回治療例に対する臨床試験でのSVRは89.1%であり、IFNが使用できないIFN不適格・不耐用例におけるSVRも87.4%と高率であった。

ただし、DAA斯combination治療で著効が得られなかった場合、高率に多剤耐性変異を獲得する。したがって、ダクラタスビル/アスナプレビル併用療法を検討する場合には、治療前にダクラタスビル耐性に関係するHCVNS5A領域（Y93/L31）遺伝子多型（変異）がないことを確認することが重要である。実際に、前治療無効例、IFN不適格・不耐用例に対する第3相臨床試験全体におけるダクラタスビル/アスナプレビル併用の著効率は85%(188/222)であったが、Y93H耐性変異がある場合（14%を占める）の著効率は43%(13/30)と、変異がない場合の91%(168/184)に比し低率であった20。L31M/V耐性変異は、低頻度（3.7%）であったが、変異がある場合の著効率は25%(2/8)と、やはり変異がない場合の87%(179/206)に比し低率であった20（図8A、B）。ダクラタスビル/アスナプレビル併用療法の非著効例において獲得された多剤耐性変異は、治療後も1年以上存続することが報告
されている。したがって、現時点で保険適用はないものの、ダクラタスビル/アスナプレビル治療前には、極力、Y93/L31 変異を測定し、変異があれば、原則としてダクラタスビル/アスナプレビル併用は選択肢としない。一方、アスナプレビル耐性に関係する遺伝子多型はシメプレビルと同じ HCV NS3 領域（D168）であるが、ゲノタイプ 1 型 HCV の 1%未満にしか存在せず、DAA 初回治療例では、治療前に測定する意義は少ない。ダクラタスビル/アスナプレビル治療の非著効例において惹起された D168 変異ウイルスは治療終了後徐々に減少し、約 1 年後には多くの症例で検出感度以下（ダイレクトシークエンス法）となることが報告されている。また、後述の通り、シメプレビル+Peg-IFN+リバビルin 3 剤併用療法あるいはパニプレビル+Peg-IFN+リバビルin 3 剤併用療法の非著効例では、D168 変異ウイルスが残存する可能性があるため、ダクラタスビル/アスナプレビル併用療法の導入は、原則として推奨されない（4-2-2-1. プロテアーゼ阻害剤治療歴のある症例の再治療の項参照）。

2015 年 6 月、第 2 世代の IFN フリーの DAAs combination であるソホスブビル/レジパスビル併用療法が保険認可となった。本邦における第 3 相試験では、未治療および既治療のゲノタイプ 1 型 C 型肝炎（未治療 166 例、既治療 175 例、代償性肝硬変 76 例を含む）に対して、ソホスブビル/レジパスビル 12 週投与群とソホスブビル/レジパスビルとリバビルin 3 併用 12 週投与群に無作為割り付けが行われ、著効率はそれぞれ未治療例で 100%(83/83)、96%(80/83)、既治療例で 100%(88/88)、100%(87/87)であった。副作用についてもいずれも軽微なものであったことから、ソホスブビル/レジパスビル併用療法は、ゲノタイプ 1 型に対する第一選択である。ただし、ソホスブビルは主に腎臓で代謝されることから、重度の腎機能障害（eGFR < 30mL/分/1.73m2）又は透析を必要とする腎不全の患者に対する投与は禁忌である。また、ダクラタスビル/アスナプレビル併用療法と同様、非代償性肝硬変に対しては、安全性が確認されていないことから、投与すべきではない。なお、ゲノタイプ 2 型の慢性肝炎の場合には、ゲノタイプ 2 型に対するソホスブビル/レジパスビル併用療法の著効率が 96%(25/26)であったと報告されていることから、ゲノタイプ 2 型に準じたソホスブビル/レジパスビル併用療法が推奨される。さらに 2015 年 9 月には新たな IFN フリー製剤であるオムビタスビル/パリタプレビル/リトナビル併用療法が保険認可となった。本邦で行われた第 3 相試験では、ゲノタイプ 1b の慢性肝炎（非肝硬変）または Child–Pugh 分類 grade6 以下の代償性肝硬変症例を対象に、非肝硬変症例（321 例）ではオムビタスビル 25mg、パリタプレビル 150mg、リトナビル 100mg の 12 週間投与を行う群（215 例）とプラセボを 12 週間投与後に実薬を 12 週間投与する群（106 例）に分ける二重盲検試験、代償性肝硬変症例（42 例）は非盲検で実薬 12 週間投与が行われた。その結果、SVR12 は非肝硬変症例の実薬群で 94.9%（204/215）、プラセボ→実薬群で 98.1%（104/106）、代償性肝硬変症例で 90.5%（38/42）であった（図 14）。この結果から、オムビタスビル/パリタプレビル/リトナビル併用療法もソホスブビル/レジパスビル併用療法と並び、ゲノタイプ 1b の慢性肝炎に対する第一選択と位置づけられる。
ただし、オムビタスビル/パリタプレビル/リトナビル併用療法を行うにあたり、特に注意を要する点が4点存在する。まず、本療法のゲノタイプ 1a に対する有効性は確認されていない。海外で実施された臨床試験では、ゲノタイプ 1a の未治療 C 型慢性肝炎患者に対するオムビタスビル（25mg）/パリタプレビル（200mg）/リトナビル（100mg）12週投与におけるSVR12は62.5%（5/8例）であった。第二に、本療法はダクラタスビル/アスナプレビル併用療法同様 NS5A 領域に変異が存在すると有効率が低下する。国内第3相試験において、Y93 変異が存在しない場合のSVR12は99.0%であるが、存在する場合には83.0%であった。ちなみに同試験からは、ダクラタスビル/アスナプレビル併用療法では治療効果に影響するL31変異は、オムビタスビル/パリタプレビル/リトナビル併用療法の場合治療効果に影響は与えないことが明らかになっている。第三に、パリタプレビルの血中濃度を上昇させ半減期を延長させるブースト効果を期待して配合されているリトナビルは強力なCYP3A4阻害作用を有しており、カルシウム拮抗剤が併用されている場合その血中濃度が上昇する可能性がある。第三相試験ではオムビタスビル・パリタプレビル・リトナビル配合錠の服薬開始2日目に血圧低下・浮腫をきたして入院を必要とした症例がみられ、また血圧低下は確認されていないものの、無尿、肺水腫といった重篤な事象が発現しており、この3例ともカルシウム拮抗剤が併用されていた。最後に、欧米においても、それと進行した肝硬変を有している症例へのフィラ・パック（オムビタスビル・パリタプレビル・リトナビル配合錠およびダサブビル併用）使用により肝不全など重篤な肝障害が頻発したことから、本邦でも Child-Pugh B および C 症例へのオムビタスビル・パリタプレビル・リトナビル配合錠投与は禁忌とされている。以上を踏まえ、オムビタスビル/パリタプレビル/リトナビル併用療法も、NS5A 領域遺伝子多型を測定し Y93 変異が存在しないことを確認した上であれば良好な成績が期待できることから、ソホスブビル/レジパスビル併用療法と並んでゲノタイプ 1型（1b）に対する第一選択として推奨される。

【Recommendation】

● ゲノタイプ1型に対する第一選択剤は、ソホスブビル/レジパスビル併用療法（ただし重度の腎障害がない場合）あるいはオムビタスビル/パリタプレビル/リトナビル併用療法（ただし Y93 変異がない場合）である（エビデンスレベル 1b，グレード A）。
● Y93/L31 変異がない場合、ダクラタスビル/アスナプレビル併用療法も選択肢となる（エビデンスレベル 2a，グレード B）。
● ゲノタイプ1型に対する IFN-based therapy では、シメプレビル+Peg-IFN+リバビリン併用療法ならびにパニプレビル+Peg-IFN+リパビリン併用療法が選択肢となる（エビデンスレベル 2a，グレード A）。
● 抗ウイルス治療を行わない場合、ALT が異常値であれば、肝庇護療法（SNMC，UDCA）やPeg-IFN（IFN）少量投与を行う（エビデンスレベル 2b，グレード B）。
● ゲノタイプ1型と2型の混合感染の治療は、1型に準じた治療をおこなう（グレード B）。
5-1-2. 初回治療における抗ウイルス療法の選択（図16）

ゲノタイプ1型の初回治療例で、重度の腎障害がない症例であればソホスブビル/レジパスビル併用療法、Y93変異のない症例であればオムビタスビル/パリタプレビル/リトナビル併用療法が第一選択である。Y93/L31変異のない症例に対してはダクラタスビル/アスナプレビル併用療法も選択肢となる。一方、IFN-based therapyでは、ゲノタイプ1型高ウイルス量症例に対しては、シメプレビル+Peg-IFN+リバビリン3剤併用療法ならびにバニプレビル+Peg-IFN+リバビリン3剤併用療法が選択肢となるが、これらのSVR率は、IL28B SNP遺伝子多型により差があることがわかっている。即ち、シメプレビル+Peg-IFN+リバビリン併用療法の初回治療例に対する国内第3相試験（CONCERTO-1）では、IL28B遺伝子多型別の著効率は、major allele（TT）で94%、minor allele（TG/GG）で71%であり、パニプレビル+Peg-IFN+リバビリン併用療法では、major allele（CC）で92%、minor allele（CT/TT）で68%であった。したがって、ゲノタイプ1型高ウイルス量症例に対するシメプレビル+Peg-IFN+リバビリン併用療法ならびにパニプレビル+Peg-IFN+リバビリン併用療法は、IL28B遺伝子多型のmajor alleleを有する症例に対して推奨される。

なおゲノタイプ1型・低ウイルス量症例では、ソホスブビル/レジパスビル併用療法、オムビタスビル/パリタプレビル/リトナビル併用療法ならびにダクラタスビル/アスナプレビル併用療法は保険認可されているが、IFN-based therapyとしてはシメプレビル+Peg-IFN+リバビリン3剤併用療法ならびにパニプレビル+Peg-IFN+リバビリン3剤併用療法の保険適用はなく、Peg-IFN(IFN)単独療法のみが使用可能である。

【Recommendation】

- ゲノタイプ1型の初回治療例では、ウイルス量の多寡にかかわらず、重度の腎障害がない症例のソホスブビル/レジパスビル併用療法、Y93変異のない症例のオムビタスビル/パリタプレビル/リトナビル併用療法は、いずれも第一選択となる（エビデンスレベル1b、グレードA）。
- Y93/L31変異のない症例に対してはダクラタスビル/アスナプレビル併用療法も選択肢となる（エビデンスレベル2a、グレードB）。
- ゲノタイプ1型・高ウイルス量症例の初回治療には、シメプレビルまたはパニプレビル+Peg-IFN+リバビリン3剤併用療法が選択肢となり、いずれもIL28B遺伝子多型のmajor alleleを有する症例に対して推奨される（エビデンスレベル2a、グレードA）。
- ゲノタイプ1型・低ウイルス量症例に対するIFN-based therapyとしてはPeg-IFN(IFN)単独療法のみが使用可能である（エビデンスレベル2b、グレードB）。

53
図16 ゲノタイプ1型（DAA治療歴なし）

治療フローチャート

C型慢性肝炎ゲノタイプ1型※1
（DAA治療歴なし）

1型

初回治療
Peg-IFN/IFN/RBV治療歴なし

再治療
Peg-IFN/IFN/RBV治療歴あり

1. • SOF/LDV（重度腎障害なし）※3
 • OBI/PTV/r（Y93変異なし）※4
2. DCV/ASV（Y93/L31変異なし）※5
3. SMVまたはVAN/Peg-IFN/RBV併用
 （L288B major type）

5-1-3. 再治療における治療効果予測

IFN/Peg-IFN+リバビリン併用療法の非著効に対するIFN-based therapyによる再治療の効果は、前回治療時の治療への反応性が最も良い指標となる。IFN/Peg-IFN+リバビリン併用療法の非著効に対する治療への反応性は、“relapse”（HCV RNAが治療中いったん陰性化したが治療終了後に再出現）ならびに“non-response（無効）”（治療中にHCV RNAの陰性化なし）に大別される。さらに、“non-response（無効）”は、ほとんど反応のなかった“null response”（治療開始12週時のHCV RNA量の減少が2log未満）と、“partial response”（治療中HCV RNAは陰性化しなかったが、治療開始12週時のHCV RNA量の減少が2log以上）に分けられる。なお、リバビリンを使用しなかった既治療例、すなわちIFNならびにPeg-IFN単独療法の既治療例に対するリバビリン併用療法による再治療では、前治療への反応性が強い効果予測因子とならないため、原則として、初回治療の方針に従う。また、前治療歴が不明の場合も初回治療の方針に従った治療を行う。

Peg-IFN+リバビリン併用療法の非著効に対する同療法の再治療では、前治療がnull responseでないことが必要条件であり、主に前治療で48週間の標準投与を受けた症例に対して、72週間の延長投与を行うことにより治療効果が向上した。また、テラプレビル+Peg-IFN+リバビリン3剤併用
による再治療においても、前治療効果は、非常に重要な治療効果予測因子であることが欧米のREALIZE試験で示されている120。これは、Peg-IFN+リバビリン併用療法既治療のゲノタイプ1型C型慢性肝炎に対して、テラプレビル+Peg-IFN+リバビリン3剤併用療法48週投与を行った臨床試験であるが、前治療効果が同じであれば、IL28B SNP(rs12980275)がメジャーアレル(CC)でもマイナー アレル(CTまたはTT)でもSVR率はほぼ同等であったことが報告されている177。

一方、本邦のシメプレビル+Peg-IFN+リバビリン3剤併用療法による既治療例に対する第3相試験(CONCERTO-2/3試験22)でも、relapser、non-responderに対するSVR率はそれぞれ90%(44/49)、51%(27/53)であった。さらに、Peg-IFNα-2bを用いたCONCERTO-4試験23)でも前治療relapserのSVR率は97%(28/29)、non-responderで38%(10/26)であり、Peg-IFNα-2aを用いたシメプレビル+Peg-IFN+リバビリン3剤併用療法においても、前治療効果は、現時点で最も重要なSVRに関与する因子である。また、バニプレビル+Peg-IFN+リバビリン3剤併用療法での国内第3相試験では、バニプレビル投与期間がrelapserに対して12週、non-responderに対して24週と異なるために単純な比較はできないが、各々のSVR率は、92.0%(23/25)、61.9%(26/42)であった。

一方、IFNフリーのDAAs combinationによる再治療効果は、IFN単独あるいはIFN+リバビリン併用療法施行時の治療反応性とは無関係である。本邦のダクラタスビル/アスナプレビル併用療法の第3相試験では、前治療無効群においてもSVR24は80.5%(70/87)であり、ソホスブビル/レジパスマニブリリバビリン併用療法の国内第3相試験では、既治療例に対するSVR24はリバビリン併用しない群で100%(88/88)、リバビリン併用群でも100%(87/87)であった。さらに、オムビタスビル/パリタプレビル/リトナビル併用療法でも、国内第3相試験において既治療例に対するSVR24は実薬群で96.1%(73/76)、プラセボ実薬群で97.4%(37/38)であった169。

【Recommendation】

● Peg-IFN(IFN)+リバビリン併用療法の非著効例に対するIFN-based therapyによる再治療の効果は、前回治療時の治療への反応性が最も良い指標となる（エビデンスレベル2b、グレードA）。

● IFNフリーのDAAs combinationによる再治療効果は、IFN単独あるいはIFN+リバビリン併用療法施行時の治療反応性とは無関係である。既治療例に対する臨床試験でのソホスブビル/レジパスマニブリリバビリン併用療法のSVRは100%、オムビタスビル/パリタプレビル/リトナビル併用療法のSVRは96~97%であった（エビデンスレベル2a、グレードA）。

5-1-4. 再治療における抗ウイルス療法の選択（図16）
再治療例においても初回治療の場合と同様の治療方針となる。即ち、ゲノタイプ1型の再治療例では、重度の腎障害がない症例のソホスブビル/レジパスマニブリリバビリン併用療法、Y93変異のない症例のオムビタスビル/パリタプレビル/リトナビル併用療法は、いずれも第一選択となる。
オムビタスビル/パリタプレビル/リトナビル併用を選択する場合には、極力、オムビタスビル耐性に関係するHCV NS5A領域Y93遺伝子多型（変異）を測定し、Y93変異があれば原則として選択肢としない。また、同様にダクラタスビル/アスナプレビル治療前には、極力、Y93遺伝子多型（変異）に加えてL31遺伝子多型（変異）も測定する。Y93/L31変異のない症例に対してはダクラタスビル/アスナプレビル併用療法も選択肢となる。アスナプレビル耐性に関係するHCV NS3領域（D168）遺伝子多型（変異）はシメプレビルやバニプレビルとの交差耐性を有するが、プロテアーゼ阻害剤治療歴のない症例ではゲノタイプ1型HCVの1%未満であるため、臨床的意義は少ない。しかし、シメプレビル+Peg-IFN+リバビリン3剤併用療法あるいはパニプレビル+Peg-IFN+リバビリン3剤併用療法の非着効例では、D168変異ウイルスが残存する可能性があるため、ダクラタスビル/アスナプレビル併用療法ならびにオムビタスビル/パリタプレビル/リトナビル併用療法は推奨されず、ソホスブビル/レジパスビル併用療法が推奨される。

一方、IFN-based therapyでは、シメプレビル+Peg-IFN+リバビリン3剤併用療法ならびにパニプレビル+Peg-IFN+リバビリン3剤併用療法が選択肢となるが、前述の通り、これらのSVR率は前治療時の反応性により大きな差があり、前治療無効例ではSVR率が5～6割であるのに対し、前治療再燃例では約9割と高い。このため、シメプレビル+Peg-IFN+リバビリン併用療法ならびにパニプレビル+Peg-IFN+リバビリン併用療法は、前治療再燃例に対して推奨される。

5-1-4-1. DAAを含む治療歴のない症例の再治療
5-1-4-1-1. 前治療再燃例・無効例
IFN-free therapyであるソフシビル/レジパスビル併用療法、オムビタスビル/パリタプレビル/リトナビル併用療法ならびにダクラタスビル/アスナプレビル併用療法では、前治療効果は著効率に関係しない。このため、初回治療例と同様、重度の腎障害がない症例のソフシビル/レジパスビル併用療法、Y93変異のない症例のオムビタスビル/パリタプレビル/リトナビル併用療法は、いずれも第一選択となる。また、Y93/L31変異のない症例に対してはダクラタスビル/アスナプレビル併用療法も選択肢となる。Y93変異がある場合にはオムビタスビル/パリタプレビル/リトナビル併用療法の著効率は約8割強、またY93/L31変異がある場合にはダクラタスビル/アスナプレビル治療による著効率は約4割にとどまるから、いずれも推奨されない。

一方、IFN-based therapyであるシメプレビル+Peg-IFN+リバビリン3剤併用療法ならびにパニプレビル+Peg-IFN+リバビリン3剤併用療法では、前治療効果が治療効果の予測因子となる。即ち、前治療再燃例では、シメプレビル+Peg-IFN+リバビリン併用療法あるいはパニプレビル+Peg-IFN+リバビリン併用療法の著効率は約9割と高率であり治療選択肢となるが、前治療無効例では、シメプレビル+Peg-IFN+リバビリン併用療法の著効率が40～50%、パニプレビル+Peg-IFN+リバビリン併用療法で約60%ととどまるため、前治療無効例に対しては、シメプレビル+Peg-IFN+リバビリン併用療法あるいはパニプレビル+Peg-IFN+リバビリン併用療法は推奨されない。また、シメプレビル+Peg-IFN+リバビリン併用療法
法あるいはバニプレビル+ Peg-IFN+ リバビリン併用療法で著効が得られなかった場合、NS3 耐性ウイルスを惹起するリスクが高いことを考慮に入れておく必要がある。

なお、リバビリン不使用の Peg-IFN(IFN)単独治療による無効例の場それでは、シメプレビル+ Peg-IFN+ リバビリン併用療法あるいはバニプレビル+ Peg-IFN+ リバビリン併用療法により初回治療例同様の良好な治療効果が得られる可能性が高いため、IFN-based therapy を施行する場合は、シメプレビル+ Peg-IFN+ リバビリン併用療法またはバニプレビル+ Peg-IFN+ リバビリン併用療法を行うことが望ましい。

5-1-4-1-2. IFN (＋リバビリン) 治療・副作用中止例

以前施行した IFN(＋リバビリン) 治療が副作用のため中止となった症例では、これまで専ら肝庇護療法が行われてきたが、IFN-free therapy であり、リバビリンも使用しない DAAs combination であるゾホスブビル/レジパスビル併用療法が使用可能となり、重度の腎機能障害のない症例に推奨される。初回治療と同様治療前に極力 Y93 変異を測定し、変異がなければオムビタスビル/パリタプレビル/リトナビル併用療法も使用可能であり、同じく推奨される。ダクラタスビル/アスナプレビル併用による抗ウイルス療法も選択肢であるが、初回治療と同様治療前に極力 Y93/L31 変異を測定し、変異がある場合には原則としてダクラタスビル/アスナプレビル治療は行わない。

【 Recommendation 】

- ゲノタイプ 1 型の再治療例では、重度の腎障害がない症例のゾホスブビル/レジパスビル併用療法、Y93 変異のない症例のオムビタスビル/パリタプレビル/リトナビル併用療法は、いずれも第一選択となる（エビデンスレベル 1b、グレード A）。
- Y93/L31 変異のない症例に対してはダクラタスビル/ アスナプレビル併用療法も選択肢となる（エビデンスレベル 2a、グレード B）。
- 前治療再燃例では、シメプレビル＋ Peg-IFN＋リバビリン併用療法あるいはバニプレビル＋ Peg-IFN＋リバビリン併用療法も選択肢となる。前治療無効例では、シメプレビル＋ Peg-IFN＋リバビリン併用療法ならびにバニプレビル＋ Peg-IFN＋リバビリン併用療法は推奨されない（エビデンスレベル 2a、グレード A）。
- シメプレビル＋ Peg-IFN＋リバビリン併用療法あるいはバニプレビル＋ Peg-IFN＋リバビリン併用療法で著効が得られなかった場合、NS3 耐性ウイルスを惹起するリスクが高いことを考慮に入れる（エビデンスレベル 2a、グレード B）。
- IFN (Peg-IFN) 単独治療の無効例では、シメプレビル＋ Peg-IFN＋リバビリン併用療法あるいはバニプレビル＋ Peg-IFN＋リバビリン併用療法を行うことも可能である（エビデンスレベル 2a、グレード B）。
- IFN(＋リバビリン) 治療が副作用で中止となった症例に対してもゾホスブビル/レジパスビル併用療法（ただし重度の腎障害がない場合）、あるいはオムビタスビル/パリタプレビル/リトナビル併用療法（ただし Y93 変異がない場合）が推奨される。Y93/L31 変異のない症例に対しては
ダクラタスビル/アスナプレビル併用による抗ウイルス療法も可能である（エビデンスレベル 2a、グレード A）。

抗ウイルス治療を行わない場合に、ALT が異常値であれば、肝庇護療法（SNMC、UDCA）やPeg–IFN（IFN）少量投与を行う（エビデンスレベル 2b、グレード B）。

5-1-4-2. DAA を含む治療歴のある症例の再治療
5-1-4-2-1. DAA を含む IFN 治療歴のある症例の再治療（図 17）

わが国においては、ゲノタイプ 1 型に対するシメプレビル、パニプレビルならびにテラプレビル +Peg–IFN+リバビリン 3 剤併用療法の非著効例がこれにあたる。いずれの治療においても、プロテアーゼ領域の耐性変異の存在が考えられる。このため、こうした症例に対する再治療には、プロテアーゼ阻害剤を含まないツホスブビル/レジパスビル併用療法が推奨される。

シメプレビルあるいはパニプレビル併用療法の非著効例で誘導された D168 変異が、同じくプロテアーゼ阻害薬を含む治療であるダクラタスビル/アスナプレビル併用療法およびオムピタスビル/パリタプレビル/リトナビル併用療法の治療効果に及ぼす影響についてのエビデンスはなく、また国内・海外臨床試験におけるプロテアーゼ阻害剤治療歴のない症例の検討から、D168 変異をもつ症例では同療法の著効率が低いことが想定されるため119, 121、現時点では、シメプレビルあるいはパニプレビル併用療法後のダクラタスビル/オムピタスビル/パリタプレビル/リトナビル併用療法による再治療は、原則として推奨されない。同様に、シメプレビル併用療法後のパニプレビル併用療法、パニプレビル併用療法後のシメプレビル併用療法による再治療についても、D168 変異の影響についてのエビデンスがないことから、原則として推奨されない。

一方、第 1 世代プロテアーゼ阻害剤であるテラプレビル+Peg–IFN+リバビリン併用療法の非著効例に対する第 2 世代プロテアーゼ阻害剤を含む抗ウイルス療法（シメプレビル+Peg–IFN+リバビリン併用療法、パニプレビル併用療法、ダクラタスビル/アスナプレビル併用療法およびオムピタスビル/パリタプレビル/リトナビル併用療法）による再治療についても、現時点でエビデンスがないため、推奨されない。

【Recommendation】

・ シメプレビル、パニプレビルならびにテラプレビル+Peg–IFN+リバビリン 3 剤併用療法の非著効例に対する再治療には、ツホスブビル/レジパスビル併用療法が推奨される（エビデンスレベル 2a、グレード A）。

・ D168 変異ウイルスは、シメプレビル、パニプレビル、アスナプレビル、パリタプレビルのいずれに対しても交叉耐性を有する（グレード B）。

・ シメプレビルあるいはパニプレビル併用療法の非著効例では、治療終了後、D168 変異ウイルスが高頻度に存在するため、シメプレビルあるいはパニプレビル併用療法後のダクラタスビル/アスナプレビル併用療法ないしオムピタスビル/パリタプレビル/リトナビル併用療法の導入は、
原則として推奨されない（グレードD）。

- シメプレビル併用療法後のバニプレビル併用療法、バニプレビル併用療法後のシメプレビル併用療法は、原則として推奨されない（グレードD）。
- テラプレビル+Peg-IFN+リバビリン併用療法の非著効例に対する第2世代プロテアーゼ阻害剤を含む抗ウイルス療法（シメプレビル+Peg-IFN+リバビリン併用療法、バニプレビル併用療法、ダクラタスビル/アスナプレビル併用療法ならびにオムビタスビル/パリタプレビル/リトナビル併用療法）による再治療についても、現時点でエビデンスがなく、推奨されない（グレードD）。

図17 ゲノタイプ1型・2型（プロテアーゼ阻害剤/Peg-IFN/RBV前治療の非著効例）
治療フローチャート

C型慢性肝炎ゲノタイプ1型・2型
（プロテアーゼ阻害剤/Peg-IFN/RBV前治療の非著効例）

<table>
<thead>
<tr>
<th>前治療</th>
<th>推奨</th>
<th>非推奨</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMV/Peg-IFN/RBV併用</td>
<td>SOF/LDV※1</td>
<td>DCV/ASV※2 O8V/PTV/+※2 VAn/Peg-IFN/RBV併用※2</td>
</tr>
<tr>
<td>VAN/Peg-IFN/RBV併用</td>
<td>SOF/LDV※1</td>
<td>DCV/ASV※2 O8V/PTV/+※2 SMV/Peg-IFN/RBV併用※2</td>
</tr>
<tr>
<td>TVR/Peg-IFN/RBV併用</td>
<td>SOF/LDV※1</td>
<td>SMV/Peg-IFN/RBV併用※3 VAn/Peg-IFN/RBV併用※3 DCV/ASV※3 O8V/PTV/+※3</td>
</tr>
<tr>
<td>2型</td>
<td>TVR/Peg-IFN/RBV併用</td>
<td>SOF/RBV※1</td>
</tr>
</tbody>
</table>

※1 重度の腎機能障害（GFR＜30mL/分/1.73m²）又は透析を必要とする腎不全の患者に対するSOFの投与は禁忌である。
※2 前治療により誘発されたD169変異をもつ症例ではDCV/ASV療法の有効性が少ないことが懸念され、またVAnあるいはSMV/Peg-IFN/RBV併用療法に対するD169変異の影響についてのエビデンスがないため、 glazedとして推奨しない。
※3 再治療の効果についてのエビデンスが少ない。ただし、シメプレビル併用療法の副作用のため薬剤投与量が不十分であった症例では適応となる。

5-1-4-2-2. DAA併用によるIFNフリートリテーションの症例の再治療（図18）

ダクラタスビル/アスナプレビル治療の非著効例で、既にY93/L31変異が惹起されている症例への対応には、難易度が高い総合的判断を要するため、このような症例の適応判断ならびに治療方針は、ウイルス性肝疾患の治療に十分な知識・経験を持つ医師によって検討される必要がある。具体的には、IFN投与が可能である場合には、薬剤耐性変異の存在が問題とならないIFN-based
therapy を行い、IFN が使用できない場合には、さらなる複雑な薬剤耐性変異の出現を防ぐため、詳細な薬剤耐性を精査しその結果を踏まえた上で適切な治療を選択する。

図18 ゲノタイプ1型（DCV/ASV前治療の不著効例）
治療フローチャート

C型慢性肝炎ゲノタイプ1型※1
（DCV/ASV前治療の非著効例）

＜IFN適格性＞

IFN適格※2

IFN不適格・不耐容※4※5

＜推奨＞

SMV/Peg-IFN/RBV併用※3

VAN/Peg-IFN/RBV併用※3

SOF/LDV (Y93・L31多重変異なし)※6

※1 DCV/ASV治療の非著効例で、既にY93/L31変異が惹起されている症例への対応には、難易度が高い総合的な判断を要するため、このような症例の適応判断ならびに治療方針は、ウイルス性肝疾患の治療に十分な知識・経験を持つ医師によって推奨される必要がある。

※2 IFN非適格可能である場合には、薬剤耐性変異の存在が問題となるCIFN-based therapyを行なう。

※3 SMVまたはPeg-IFN/RBV治療を行う場合には、D189変異を測定し、D189変異がないことを確認する。

※4 IFNが使用できない場合には、さらなる複雑な薬剤耐性変異の評価を防ぐため、詳細な薬剤耐性を確定した結果を踏まえた上で適切な治療を推奨する。

※5 DCV/ASV治療の同等性に変異が惹起される可能性があるODV/PTV治療は推奨されない。

※6 SOF/LDV治療を選択する場合には、既にY93/L31変異が認められた耐性変異を詳細に観察し、少なくともL31・Y93多重変異がないことを確認する。DCV/ASV治療により惹起されたY93/L31多重変異をもつ症例ではSOF/LDV治療の有効性は確認されておらず、再治療の効果についてのエビデンスがない。このような症例の適応判断ならびに治療方針は、発症リスクからもY93変異持主症例に対してSOF/LDV治療を行う場合の著効率とさらなる複雑な多剤耐性獲得のリスクを十分に勘案して方針を決定する。

なお、オムビタスビル/パリタプレビル/リトナビル併用療法は Y93 変異が存在する場合有効率が低下するため、ダクラタスビル/アスナプレビル治療の非著効例に対しては推奨されない。

【Recommendation】

● ダクラタスビル/アスナプレビル治療の非著効例で、既に Y93/L31 変異が惹起されている症例への対応には、難易度が高い総合的な判断を要するため、このような症例の治療方針は肝臓専門医あるいはウイルス性肝疾患の治療に十分な知識・経験を持つ医師によって検討
される必要がある（エビデンスレベル 6、グレード A）。

- 具体的には、IFN 投与が可能である場合には、薬剤耐性変異の存在が問題とならない IFN-based therapy を行い、IFN が使用できない場合には、さらなる複雑な薬剤耐性変異の出現を防ぐため、詳細な薬剤耐性を精査しその結果を踏まえた上で適切な治療を選択する（エビデンスレベル 6、グレード A）。

5-2. ゲノタイプ2型
5-2-1. 初回治療（図 19）
2015 年 3 月、ゲノタイプ2型に対して、NS5B polymerase 阻害剤（核酸型）であるソホスブビルとリバビリンとの併用療法が製造承認された。本邦における第3相臨床試験では、初回治療のゲノタイプ 2 型 C 型肝炎患者 90 例に対してソホスブビル(400mg/日)/リバビリン 12 週投与が行われ、副作用による中止例はなく 98%の SVR 率が得られており、同療法はゲノタイプ 2 型初回治療の第一選択剤である。リバビリン製剤としてはコペガス・レベトールいずれの使用も承認されている。

なお IFN-based therapy では、高ウイルス量であれば Peg-IFN+リバビリン併用療法、低ウイルス量であれば Peg-IFN(IFN)単独療法も選択肢である。HCV RNA 量が 1,000 KIU/ml (6.0 LogIU/ml)未満であれば Peg-IFN 単独療法でも治癒が期待できる。特に HCV RNA が 4 〜 8 週で陰性化した場合、80%以上の症例で SVR が得られる。

なお、ゲノタイプ 1 型と 2 型の混合感染の治療は、1 型に準じた治療をおこなう。

【Recommendation】
- ゲノタイプ 2 型症例の初回治療の第一選択剤は、ソホスブビル/リバビリン併用療法である（エビデンスレベル 2a、グレード A）。
- ゲノタイプ 2 型・高ウイルス量症例の初回治療には、Peg-IFN+リバビリン併用療法、ゲノタイプ 2 型・低ウイルス量症例の初回治療には、Peg-IFN(IFN)単独療法も選択肢となる（エビデンスレベル 2a、グレード B）。
- ゲノタイプ 1 型と 2 型の混合感染の治療は、1 型に準じた治療をおこなう（グレード B）。

5-2-2. 再治療（図 17・図 19）
前述の通り、2015 年 3 月、ゲノタイプ2型に対してソホスブビル/リバビリン併用療法が製造承認された。本邦における第3相臨床試験では、既治療のゲノタイプ2型 C 型肝炎患者 63 例に対してソホスブビル(400mg/日)/リバビリン 12 週投与が行われ、95%(60/63)の SVR 率であった。今後、ゲノタイプ2型の既治療例に対してもソホスブビル/リバビリン併用療法が第一選択となる。前治療がテラプレビル+Peg-IFN α-2b+リバビリン 3 剤併用療法の場合にもソホスブビル/リバビリン併用療法が推奨される。

なお、ゲノタイプ 2 型・再治療例に対してはテラプレビル+Peg-IFN α-2b+リバビリン 3 剤併用療法
も使用可能であるが、国内第3相試験におけるSVR率は、前治療再燃例では88%と高率であるものの、無効例では50%と低率であるため、前治療無効例では推奨されない。

【Recommendation】

- ゲノタイプ2型症例の再治療の第一選択剤は、ソホスブビル+リバビリン併用療法である（エビデンスレベル 2a、グレード A）。
- 前治療がテラプレビル+Peg-IFN α-2b+リバビリン3剤併用療法の場合にもソホスブビル+リバビリン併用療法が推奨される（エビデンスレベル 2a、グレード A）。
- ゲノタイプ2型の再燃例では、テラプレビル+Peg-IFN α-2b+リバビリン3剤併用療法も使用可能である（エビデンスレベル 2a、グレード C1）。

図19 ゲノタイプ2型
治療フローチャート

C型慢性肝炎ゲノタイプ2型※1※2※3※4

5-3. ALT正常例への対応

Peg-IFN+リバビリン併用療法を施行した治験開始時ALT正常C型慢性肝炎809例（M/F:269/540例、平均年齢:57±11歳、ゲノタイプ1型/2型:550/247例、平均観察期間36.2±16.5か月）における肝発癌の検討では、血小板15万/μl以上の群（n=586）では、治療効果によって発癌率に有意な差はなく、無効例であっても3年の発癌率は1.5%であったが、血小板15万/μl未
満の群（n=323）では無効例で3年の累積発癌率は10.1%と高値であったのに対し、著効例、再燃例では3年までの発癌はなく、Peg-IFN+リバビリン併用療法によって有意に発癌が抑制されたと報告されている（p<0.001）180）。また、ALT正常例とALT上昇例との間ではPeg-IFN+リバビリン併用療法の効果は同等である181,182）。
したがってALT30U/l以内の症例でも、血小板数15万/μl未満であれば抗ウイルス療法に良い適応となる。一方、ALT30U/l以内かつ血小板数15万/μl以上の症例については、すぐに抗ウイルス療法を施行せずに経過観察してもよい。しかし経過ごALTAが上昇する可能性もあり、現時点で患者に抗ウイルス療法に対する強い希望がある場合には治療適応となる。なお、現在のところALT正常例でのエビデンスがあるのは主としてPeg-IFN+リバビリン併用療法であるが、DAA+Peg-IFN+リバビリン併用療法あるいはDAA combinationによるIFNフリーティラブにおいても、同様の治療効果が期待できるものと考えられる。

【Recommendation】

- ALT正常例（ALT30U/l以内）に対する抗ウイルス療法は、ALT上昇例と同様に施行することが可能である。特に血小板数15万/μl未満の例では積極的な治療が望ましい（エビデンスレベル2a、グレードA）。

6. 肝硬変に対する治療戦略
6-1. 代償性肝硬変に対する抗ウイルス治療
肝予備能が保たれ、黄疸、腹水、肝性脳症、胃・食道静脈瘤出血などの肝不全症状がない状態を代償性肝硬変、肝不全症状を伴う状態を非代償性肝硬変と呼ぶ。高度の肝線維化進行がみられる肝硬変は、肝発癌の高リスク群である。また、肝発癌をみぬかれて肝不全に進展すれば生命予後が不良となる。したがって、肝硬変の治療目的は肝発癌と肝不全の両者を抑制することにあり、代償性肝硬変では積極的な抗ウイルス療法の必要性が高い。代償性肝硬変に対する抗ウイルス治療によりウイルスの排除が得られれば、肝発癌や肝不全の発生を抑制することが期待できる7）。しかし、近年C型慢性肝炎の治療効果の向上に寄与したDAAであるテラプレビル・シメプレビル・バニプレビルはいずれも肝硬変に対する保険適用がなく、肝硬変に対する抗ウイルス療法はこれまでPeg-IFN+リバビリン併用療法のみであった。また、元来肝線維化進展例はIFN抵抗性であり、加えて肝硬変に合併する脾機能亢進症による汎血球減少がIFN治療の障害となるため92,93）、肝硬変症例におけるHCV排除は困難であった。
一方2014年7月にダクラタスビル/アスナプレビル併用療法、2015年6月にソホスブビル/レジパスビル併用療法、2015年9月にオムビタスビル/パリタプレビル/リトナビル併用療法がそれぞれゲノタイプ1型の代償性肝硬変に承認され、また2015年3月にソホスブビル/リバビリン併用療法がゲノタイプ2型の代償性肝硬変に承認されたことから、肝硬変患者においてもIFNフリーのDAAによるHCV排除が可能となった。ソホスブビル/レジパスビル併用療法およびオムビタスビル/パリタプレビル/アスナプレビル併用療法に代表される新型DAA療法が登場し、肝硬変に対する治療戦略も大きく進化した。
レビル/リトナビル併用療法は、ゲノタイプ1型の代償性肝硬変に対する第一選択となる。ただし、ソホスブビル/レジパスビル併用療法は重度の腎機能障害や透析症例では禁忌である。また、オムタスビル/パリタプレビル/リトナビル併用療法はゲノタイプ1aに対する有効性が低下する。さらにNS5A領域Y93変異が存在する症例では有効率が低下するため、Y93変異がないことを確認する必要があり、さらにChild-Pugh分類grade BまたはCの症例に対する投与は禁忌である。ゲノタイプ2型の代償性肝硬変にはソホスブビル/リバビル併用療法が推奨される。

一方、肝硬変症例に対してテラプレビル・シメプレビル・バニプレビルによるIFN-based therapyを行うべきではない。

Recommendation
- C型代償性肝硬変では、肝発癌と肝不全の抑制を目指して積極的にIFNフリーのDAAによる抗ウイルス治療を行う（エビデンスレベル1a、グレードA）。
- 肝硬変症例に対してテラプレビル・シメプレビル・バニプレビルによるIFN-based therapyを行うべきではない（グレードD）。

6-1-1. Peg-IFN+リバビル併用療法
わが国においては、2011年より代償性肝硬変に対してPeg-IFNα-2bまたはPeg-IFNα-2aとリバビルの併用療法が、ウイルス量やゲノタイプにかかわりず保険適用となっている。国内臨床試験におけるC型代償性肝硬変に対するPeg-IFNα-2b 1.0μg/kg/週+リバビル併用療法48週の治療成績は、1型高ウイルス量で22%（15/69）、1型高ウイルス量以外で79%（26/33）のSVR率であり、1型高ウイルス量以外で高い有効性が示されている。また、Peg-IFNα-2aの90μgと180μgの2用量とリバビル併用療法48週の治療成績では、90μg群で28%（17/61）、180μg群で27%（17/63）のSVR率であり、両群間に差はみられない。90μg群では、ゲノタイプ1型で21%（10/48）、2型で50%（6/12）のSVR率であり、2型に対する有効性が高い。

代償性肝硬変に対するPeg-IFNα-2bの標準投与量は1.0μg/kg/週、Peg-IFNα-2aの標準投与量は90μg/週である。

Recommendation
- C型代償性肝硬変に対するPeg-IFNα-2bの標準投与量は1.0μg/kg/週であり、Peg-IFNα-2aは90μg/週である（グレードB）。
- 国内臨床試験におけるC型代償性肝硬変に対するPeg-IFNα-2b 1.0μg/kg/週+リバビル併用療法48週の治療成績は、1型高ウイルス量で22%（15/69）、1型高ウイルス量以外で79%
(26/33)の SVR 率であり、1 型高ウイルス量以外で高い有効性が示されている（エビデンスレベル 2a、グレード B）。

- 国内臨床試験における C 型代償性肝硬変に対する Peg-IFN α-2a 90 μg+リバビル併用療法 48 週の治療成績は、エビデンスレベル 2a、グレード B。(6/12)の SVR 率であり、2 型に対する有効性が高い（エビデンスレベル 2a、グレード B）。

6-1-2. ダクラタスビル/アスナプレビル併用療法

ダクラタスビルは NS5A 阻害剤、アスナプレビルは NS3-4A 領域を標的としたプロテアーゼ阻害剤である。ダクラタスビルは 1 回 60mg を 1 日 1 回経口投与、アスナプレビルは 1 回 100mg を 1 日 2 回経口投与され、2 剤併用によって 24 週間投与される。代償性肝硬変例でも投与量の減量は不要である。

IFN 不適格・不耐容例、前治療無効群を対象としたダクラタスビル/アスナプレビルの国内第 3 相試験では前治療無効例 87 例、IFN を含む治療法に不耐容または不適格例 135 例が対象となったが、このうち無効例群の 11 例、IFN(+)RBV 不適格・不耐容例群の 11 例、計 22 例の代償性肝硬変症例が含まれており、22 例中 20 例（90.9%）が SVR を達成した。国内第 3 相試験の結果では、有効性・安全性とともに肝硬変・非肝硬変の間に有意な差異はみられない。

ただし、国内第 3 相試験で対象となっているのは代償性肝硬変のみであり、非代償性肝硬変症例はダクラタスビル/アスナプレビル併用療法の保険適用となっておらず、安全性も確認されていない。Child-Pugh 分類 grade B または C の症例に対する投与も禁忌である。

【Recommendation】

- IFN 不適格・不耐容例、前治療無効群を対象としたダクラタスビル/アスナプレビルの国内第 3 相試験における代償性肝硬変症例の SVR 率は 90.9%（20/22）であった（エビデンスレベル 2a、グレード A）。
- 有効性・安全性とともに代償性肝硬変とそれ以外の症例との間に有意な差異はみられない（エビデンスレベル 2a、グレード A）。
- 非代償性肝硬変症例に対するダクラタスビル/アスナプレビル併用療法には保険適用がなく、安全性も確認されていない（グレード D）。
- Child-Pugh 分類 grade B または C の症例に対する投与も禁忌である（グレード D）。

6-1-3. ソホスブビル/レジパスビル配合剤

欧米の臨床試験（ELECTRON、LONESTAR、ION-1、ION-2、ION-3、GS-US-334-0113、SIRIUS）において、ダクラタスビル例 C 型代償性肝硬変 513 例にソホスブビル/レジパスビル±リバビル（12 週または 24 週）が投与された。この結果、SOF/LDV12 週投与では未治療の肝硬変では着効率が 96%であったのに対し、IFN 治療歴のある肝硬変では 90%と低率であった。一方、SIRIUS
は、 Peg-IFN/リバビリンもしくはプロテアーゼ阻害剤/Peg-IFN/リバビリンが無効であった代償性 C 型肝硬変 155 例に対して、ソホスブビル/レジパスビルとリバビリンの併用 12 週投与とソホスブビル/レジパスビル 24 週投与との無作為割り付け試験であるが、著効率はそれぞれ 96%、97%であった。このように、前治療無効の肝硬変に対しては、ソホスブビル/レジパスビル 24 週投与、もしくは長期投与が困難な症例ではソホスブビル/レジパスビルとリバビリンの併用 12 週投与が治療の選択肢となる可能性が示唆されている。

一方、わが国における国内第 3相試験では、ソホスブビル/レジパスビル±リバビリン（12 週投与）が行われ、ゲノタイプ 1 型 C 型肝硬変の初回治療例での SVR 率は、ソホスブビル/レジパスビル群で 100%(13/13)、リバビリン併用群で 92%(11/12)であり、既治療例では、いずれも 100%(28/28)、100%(23/23)であった。また、ソホスブビル/レジパスビル併用では、有害事象による投与中止は認めなかった。この結果を受けて、わが国では、初回治療、再治療にかかわらず、ソホスブビル/レジパスビル（12 週投与）が保険認可されている。なお、代償性肝硬変症例に対するソホスブビル/レジパスビル併用療法には保険適用がなく、安全性も確認されていないため、使用すべきではない。

【Recommendation】

- ゲノタイプ 1 型の C 型肝硬変に対するソホスブビル/レジパスビル併用 12 週間の SVR 率は国内第 3相試験では 100%であった（エビデンスレベル 2a、グレード A）。
- 有効性・安全性とともに代償性肝硬変とそれ以外の症例との間に有意な差異はみられない（エビデンスレベル 2a、グレード A）。
- 非代償性肝硬変症例に対するソホスブビル/レジパスビル併用療法には保険適用がなく、安全性も確認されていないため、使用すべきではない（グレード D）。

6-1-4．ソホスブビル/リバビリン併用療法

海外第 3相試験での POSITRON 試験では、ゲノタイプ 2 型の初回治療代償性肝硬変での SVR は 94%であった156。Peg-IFN+リバビリンの前治療歴のあるゲノタイプ 2 型に対する FUSION 試験では、ソホスブビル/リバビリン 併用 12 週間の代償性肝硬変での SVR は 60%であった156。VALANCE 試験では肝硬変 9 例の SVR は 78%であった157。国内第 3相臨床試験では、肝硬変では全体の SVR12 は 94%(16/17)、初回治療では 100%(8/8)、既治療では 89%(8/9)であった。肝硬変の有無により副作用の発現頻度と重篤度に差はなかった158。

【Recommendation】

- ゲノタイプ 2 型の C 型肝硬変に対するソホスブビル/リバビリン併用 12 週間の SVR 率は国内第 3相試験では 94%(16/17)であった（エビデンスレベル 2a、グレード A）。
- 有効性・安全性とともに代償性肝硬変とそれ以外の症例との間に有意な差異はみられない（エビデンスレベル 2a、グレード A）。

66
非代償性肝硬変症例に対するソホスブビル/リバビリン併用療法には保険適用がなく、安全性も確認されていない（グレードD）。

6-1-5. オムビタスビル/パリタプレビル/リトナビル併用療法
オムビタスビル/パリタプレビル/リトナビル併用療法の国内第3相臨床試験では、ゲノタイプ1b、Child-Pughスコア6以下の代償性肝硬変症例42例が対象となり、非盲検で実薬12週間投与が行われた。治療成績（SVR12）は90.5%（38/42）であった（図14）。非肝硬変症例同様、年齢、性別、治療開始時のHCV RNA量、IL28B遺伝子多型、過去のインターフェロン治療の有無などは治療効果に関係しなかった。

ただし、非代償性肝硬変症例に対する安全性は確認されていない。また、欧米においても代償性肝硬変を有している症例へのイヴィラ・パック（オムビタスビル・パリタプレビル・リトナビル配合錠およびダサブビル併用）使用により肝不全など重篤な肝障害が顕著に発症したことから、FDAは2015年10月、Child-Pugh分類grade BおよびCへのイヴィラ・パックの投与を禁忌（contraindicated）とする通達を出した。これに伴い、本邦でもChild-PughBおよびC症例へのオムビタスビル・パリタプレビル・リトナビル配合錠投与は禁忌されている。

【Recommendation】
- 国内第3相試験において、ゲノタイプ1b型のChild-Pughスコア6以下のC型代償性肝硬変に対するオムビタスビル/パリタプレビル/リトナビル併用療法のSVR率は90.5%（38/42）であった（エビデンスレベル2a、グレードA）。
- 非代償性肝硬変、およびChild-Pugh分類grade BまたはCの症例へのオムビタスビル・パリタプレビル・リトナビル配合錠投与は禁忌である（グレードD）。

6-1-6. 1型・代償性肝硬変に対する抗ウイルス療法の選択（図20）
代償性肝硬変は線維化が高度に進行しており、発癌リスクが著しく高く、早期の抗ウイルス療法の導入が必要である。初回治療・既治療例とも、代償性肝硬変で保険認可されているPeg-IFNα・リバビリン2剤併用療法の治療効果が低いため、ソホスブビル/レジパスビル併用療法およびオムビタスビル/パリタプレビル/リトナビル併用療法が第一選択である。ただし、重度の腎障害がある症例、透析例ではソホスブビル/レジパスビル併用療法は禁忌である。また、オムビタスビル/パリタプレビル/リトナビル併用療法ではゲノタイプ1aに対する有効性が低下する。さらにY93変異が存在しないことを確認する必要があり、加えてChild-Pugh分類grade Bの症例に対する投与は禁忌である。ゲノタイプ1bであればダクラタスビル/アスナプレビル併用療法も選択肢となるが、慢性肝炎同様、極力Y93/L31変異を治療前に測定し、変異があった場合にはダクラタスビル/アスナプレビル併用療法は行わない。ダクラタスビル/アスナプレビル併用療法もChild-Pugh分類grade Bの症例に対する投与
は禁忌である。

抗ウイルス療法を行ってもウイルス排除が得られない場合、あるいは抗ウイルス療法の適応がない場合に、ALT 値が異常（30 U/L 超）である症例では肝庇護療法、あるいはPeg-IFN（IFN）少量投与を行う。肝硬変に対するIFN またはPeg-IFN の少量維持療法は、肝病変の進展阻止および肝発癌の抑制に有用である可能性が示されている。しかし、全ての症例で効果が得られるわけではなく、効果がみられない場合は治療中止基準に従って治療を中止する。

【Recommendation】

● ゲノタイプ 1 型の代償性肝硬変では、初回治療・既治療例ともソホスプビル/レジバランスビル併用療法およびオムピタスビル/パリタプレビル/リトナビル併用療法が推奨される（エビデンスレベル 1a、グレード A）。

● 重度の腎障害がある症例、透析例ではソホスプビル/レジバランスビル併用療法は禁忌である（グレード D）。

● オムピタスビル/パリタプレビル/リトナビル併用療法ではゲノタイプ 1a に対する有効性が低下する。さらに Y93 変異が存在しないことを確認する必要があり、加えて Child-Pugh 分類 grade B の症例に対する投与は禁忌である（グレード D）。

● ゲノタイプ 1b であればダクラタスビル/アスナプレビル併用療法も選択肢となるが、慢性肝炎同様、極力 Y93/L31 変異を治療前に測定し、変異があった場合にはダクラタスビル/アスナプレビル併用療法は行わない。Child-Pugh 分類 grade B の症例に対する投与は禁忌である（グレード D）。

● 抗ウイルス療法ができない場合に、ALT が異常値であれば、肝庇護療法（SNMC、UDCA）を行う。また、肝炎鎮静化を目指したPeg-IFN（IFN）少量投与も選択肢となる。ただし、効果がみられない場合は治療中止基準に従って治療を中止する（エビデンスレベル 2a、グレード C1）。

6-1-7. 2型・代償性肝硬変に対する抗ウイルス療法の選択（図 20）

ゲノタイプ2型の代償性肝硬変では、Peg-IFN+リバビリン併用療法に加えてソホスプビル/リバビリン併用療法が適応である。ダクラタスビル/アスナプレビル併用療法の保険適用はない。IFN 不適格と判断される症例では、初回治療・既治療例ともソホスプビル/リバビリン併用療法が基本治療となる。一方、IFN 適格と判断される症例でも、Peg-IFN+リバビリン 2 剤併用療法の治療効果はソホスプビル/リバビリン併用療法に比し低く、また副作用も多いことから、ソホスプビル/リバビリン併用療法が基本治療となる。ただし、治療法の選択においては、IFN-based therapy には発癌抑制のエビデンスがあることを考慮に入れる。

いずれの場合においても、抗ウイルス療法によってウイルス排除が得られない場合、IFN 治療への忍容性がない場合、ALT が異常値であれば、肝庇護療法（SNMC、UDCA）を行う。また、肝炎鎮
静化を目指した Peg-IFN (IFN) 少量投与も選択肢となる。ただし、効果がみられない場合は治療中止基準に従って治療を中止する。

【Recommendation】

- ゲノタイプ 2 型の代償性肝硬変では、初回治療・既治療例ともソホスブビル/リバビリン併用療法が基本治療となる（エビデンスレベル 1a、グレード A）。
- 抗ウイルス療法でもウイルス排除が得られない場合、あるいは抗ウイルス療法の適応がない場合に、ALT が異常値であれば、肝底薬療法（SNMC、UDCA）を行う。また、肝炎鎮静化を目指した Peg-IFN (IFN) 少量投与も選択肢となる。ただし、効果がみられない場合は治療中止基準に従って治療を中止する（エビデンスレベル 2a、グレード C1）。

図20 ゲノタイプ 1 型・2 型代償性肝硬変（初回治療・再治療）治療フローチャート

C型代償性肝硬変※1

1. SOF/LDV（重度脳障害なし）※2
 • OBV/PTV/r（Y93変異なし）※3
 2. DCV/ASV（Y93/L31変異なし）※4

6-2. 非代償性肝硬変に対する抗ウイルス治療

非代償性肝硬変では、肝不全死のリスクが高く、適応例に対しては肝移植が最も有効な治療法となる。しかし、肝移植後の C 型肝炎の再発により 5 年間に約 30%はグラフトロスに陥るため、海外では移植前に HCV の排除または抑制を目指して IFN 治療が行われている 187, 188。いくつかの臨床試
験では、ゲノタイプ2型症例などに対してPeg-IFN(+リバビリン併用)療法の有効性が報告されている189-191。しかし、非代償性肝硬変では、治療中の血小板減少、貧血、感染症、肝代償不全の発現リスクが高く、高度の血球減少のため、治療中止に至ることが多い。また、Child-Pugh分類gradeA/Bに対し、gradeCでは、治療に伴う重篤な感染症合併が報告されている192。また、非代償性肝硬変に対するダクラタスビル/アスナプレビル併用療法、ソホスブビル/レジパスビル併用療法、オムビタスビル/パリタプレビル/リトナビル併用療法およびリパビリン併用療法の安全性は確認されておらず、投与を行うべきではない。以上より、現時点で非代償性肝硬変に対して推奨される抗ウイルス治療はない。

【Recommendation】
- C型非代償性肝硬変では、IFN治療の有効性は低い。特にChild–Pugh分類gradeCでは、IFN治療の認容性は不良であり、血球減少および感染症などの重篤な副作用の発現がみられる(グレードD)。
- 非代償性肝硬変に対するダクラタスビル/アスナプレビル併用療法、ソホスブビル/レジバスビル併用療法、オムビタスビル/パリタプレビル/リトナビル併用療法およびソホスブビル/リパビリン併用療法の安全性は確認されておらず、投与を行うべきではない(グレードD)。

6-3. 血小板減少例に対する治療

血小板減少例に対する抗ウイルス療法は、血小板減少の副作用のないDAAsによるIFNフリーが中心となる。即ちゲノタイプ1型に対しては、ソホスブビル/レジバスビル併用療法(重度の腎障害がない場合)、オムビタスビル/パリタプレビル/リトナビル併用療法(Y93変異がない場合)、ならびにダクラタスビル/アスナプレビル併用療法(Y93/L31変異がない場合)、ゲノタイプ2型に対してはソホスブビル/リパビリン併用療法(重度の腎障害がない場合)が推奨される。

脾機能亢進症に伴う血小板減少が顕著な症例では、Peg–IFNまたはリバビリン併用療法を導入することは困難である。脾摘術あるいは部分的脾動脈塞栓術(partial splenic embolization; PSE)により、血小板数を増加させ、IFN治療を導入する工夫がなされている193-195。わが国では、主にChild–PughAの肝硬変を対象に、脾摘出術あるいはPSEを行った後、Peg–IFN(+リバビリン併用)療法が導入されている。いずれの方法も、ほとんどの症例で治療後に血小板数の増加がみられ、治療成績ではゲノタイプ2型で高いSVR率がみられている。しかし、脾摘出術あるいはPSEのいずれにおいても、重症感染症(overwhelming post-splenectomy infection; OPSI)、門脈血栓症、肝機能異常などの術後合併症が報告されている194-196。海外では血小板数を増加させる経口薬としてthrombopoietin–receptor agonistであるeltrombopagが開発されている197が、わが国ではまだ臨床に導入されていない。

【Recommendation】
- 血小板減少例では、ゲノタイプ1型に対しては、ソホスブビル/レジバスビル併用療法(重度の
腎障害がない場合）、オムビタスビル/パリタプレビル/リトナビル併用療法（Y93 変異がない場合）、ならびにダクラタスビル/アスナプレビル併用療法（Y93/L31 変異がない場合）、ゲノタイプ2型に対してはソホスブビル/レジパスビル併用療法（重度の腎障害がない場合）が推奨される（エビデンスレベル 1a, グレード A）。

7. Special population に対する治療戦略
7-1. HBV 共感染例
C 型慢性肝炎に B 型肝炎感染を合併する頻度は海外では 2-10%と報告されているが、これは日本より HBV の侵淫度の高い国のデータであり、国内での頻度はこれよりも低いと考えられる。B 型肝炎を合併した C 型肝炎の場合、増殖の盛んなウイルスはどちらか一方だけであることが一般的である。これはウイルス相互の干渉作用によるものと説明されている。C 型肝炎の活動性が強く、HBV の増殖は抑制されている場合が多い。どちらのウイルスが肝障害の原因となっているかについては、臨床経過を観察し、それぞれのウイルス量の変動と肝機能の変動との関係から判断する。

HBV 共感染例では、HCV 単独感染例よりも線維化が進展しやすく、肝硬変への進行の頻度も高いため、より積極的な治療が望ましい。従来、HBV の重複感染をもたなかった C 型慢性肝炎に対しては、HCV 単独感染症例、Peg-IFN+リバビリン併用療法が行われてきたが、共感染例の奏効率は、単独感染と同等あるいは少し低いとされていた。今後は、HCV 単独感染例同様、IFN フリーの DAA combination による治療が推奨される。治療の適応に関しては HCV 単独感染と同様である。

ただし、HBV と HCV の重複感染例、あるいは現時点における HBV 感染がない HBV 既往感染例における HCV 感染に対して、HCV に対する抗ウイルス治療を単独で行うと、HBV の再活性化および重症肝炎が起こる可能性があり、厳重な注意が必要である。Peg-IFN+リバビリン併用療法を行うと、HBV の再活性化が約3割の症例で起こることが報告されている。IFN フリーの DAA combination では、海外からのソホスブビル/シメプレビル併用療法やソホスブビル/レジパスビル併用療法の施行例において、IFN 同様、HCV 排除後に HBV の再活性化およびそれに伴う重症肝炎が生じたと報告されており、症例の中には HBV 既往感染例も含まれている。また、国内でも、Hbs 抗原陽性の HBV 共感染例に対するソホスブビル/アスナプレビル併用療法開始後、HCV-RNA 量が低下する一方で HBV 再活性化が生じたという事例が生じており、死亡例も報告されている。こうした症例では HCV 感染が HBV の増殖を抑えていたものと考えられる。したがって、HBV/HCV 共感染例、あるいは HBV 既往感染例に対する抗 HCV 治療においては HBV の再活性化に厳重な注意が必要である。まず、HCV に対する抗ウイルス治療施行前には、HBV 共感染ないし既往感染の有無を確認し、HBV 共感染であることが判明した症例では、抗 HCV 治療前および治療中に HBV-DNA 量など HBV マーカーをモニタリングし、HBV-DNA 量の上昇がみられた場合には核酸アナログを投与する。また、ALT の上昇時には抗 HCV 療法中でなくとも HBV の再活性化の可
可能性を考え、HBV DNAを測定することが望ましい。さらに既往感染例でも、抗HCV治療中のALT上昇時など、必要に応じてHBV検査を行い、再活性化が判明した場合には核酸アナログを投与する。ことに免疫抑制状態にある患者の場合は治療終了後に再活性化がみられる可能性があり注意が必要である。

なお、ソロスビル/レジパスビル併用療法では、薬剤相互作用によってB型肝炎に対して投与されているテノホビルの血中濃度が上昇する可能性があり、共感染の場合には注意しなければならない。一方、共感染例に対する抗HCV治療中にHBs抗原が減少する例もあるが、その多くはベースラインのHBs抗原量の少ない例である211）。治療5年後に30％の症例でHBs抗原が消失したという報告もある212）。さらに肝細胞癌の発生も抑えられることも報告されている213）。

【Recommendation】
- HCV/HBVの重複感染例に対してはHCV単独感染例同様の治療を行うべきである（エビデンスレベル2b、グレードA）。
- HCVに対する抗ウイルス治療施行前には、HBV共感染ないし既往感染の有無を確認する（エビデンスレベル5、グレードA）。
- HBV共感染例に対する抗HCV治療においては、HBVの再活性化に厳重な注意が必要である。抗HCV治療前および治療中にHBV-DNA量などHBVマーカーをモニタリングし、HBV-DNA量の上昇がみられた場合には核酸アナログを投与する（エビデンスレベル5、グレードA）。
- HBV既往感染例に対する抗HCV治療においてもHBVの再活性化には注意が必要である（エビデンスレベル5、グレードB）。抗HCV治療中のALT上昇時など、必要に応じてHBV検査を行い、再活性化が判明した場合には核酸アナログを投与する（エビデンスレベル5、グレードA）。

7-2. HIV共感染例

7-2-1. 疫学と自然経過

本邦におけるHIV感染者のうちHCV重複感染の頻度は約20％である210）。HCV重複感染の頻度は感染経路によって大きく異なり、HIV併血友病患者で97％に、また男性同性愛者で4％にHCV重複感染を認める。HIV感染症に対する多剤併用療法（highly active antiretroviral therapy: HAART、最近ではantiretroviral therapy: ART）の進歩によって日和見感染などのエイズ関連死は減少し、非エイズ関連死が増加している。欧米の報告では、肝疾患関連死は非エイズ関連死のなかでも悪性腫瘍に次いで2番目に多く213）、その大半は肝炎ウイルス、中でもHCVによるものと想定される。従ってHIVに合併するHCVに対する治療はHIV感染症対策のなかでも重要な位置を占めている。HCV感染症の側からHIV感染者の割合を調べた成績はないが、薬物静注者においてはHCV感染者の約7分の1がHIVに感染しているという成績がある210）。
HIV 感染症の合併がある場合、C 型肝炎単独よりも線維化が進展しやすく、肝硬変の頻度もより高いことの多くの解析が示しているため、より積極的な治療が望ましい。日本におけるHIV/HCV 感染症のうち 700 人程度は血液製剤の使用による感染例である。こうした例ではゲノタイプ 1a 型や 3a 型といった、HCV 単独感染では 1-2%に認められるにすぎない遺伝子型が 10%以上に認められる。複数の遺伝子型が混在している場合もある。抗 HCV 療法のレジメンは遺伝子型により異なることを鑑みると、HIV 重複感染例に対する抗 HCV 療法を行う際は、特に血液製剤による感染例では事前に HCV 遺伝子型検査（保険未収載）を行い、適切な抗 HCV 療法を選択することが推奨される。

7-2-2. HIV/HCV 重複感染例に対する抗ウイルス療法

7-2-2-1. IFN-based antiviral therapy

HIV と HCV の重複感染例の C 型慢性肝炎に対しては、単独感染同様、Peg-IFN+リバビリン併用療法が標準療法であった。治療により非代償期への進展抑制、肝細胞癌発生抑制、肝疾患関連死を減少させることができる。しかしながら抗ウイルス効果は HCV 単独感染例に比べ低かった。その理由としては樹状細胞機能の低下、IP-10 の産生低下、IL-28B の遺伝子多型、アドヒアランスの低さなどが挙げられている。プロテーゼ阻害薬と Peg-IFN+リバビリン併用療法との併用に関してはテラプレビルとの併用の成績が報告されている。いずれも HCV 単独感染症に比べ SVR はやや低かった。

7-2-2-2. IFN-free antiviral therapy

ダクラタスビル/アスナプレビル併用療法は HIV/HCV 重複感染例にはほとんど使用されない。抗 HIV 薬と Asunaprevir との相互作用があること、本邦の HIV/HCV 重複感染例ではダクラタスビル/アスナプレビル併用の治療効果が低いゲノタイプ 1a 症例が多いことが理由である。一方、ソホスブビルは HIV/HCV 重複感染例に対しても高い効果を示す。海外の報告によれば、ゲノタイプ 1 型の症例ではソホスブビル/レジパスビル併用療法 (12 週間) により、治療歴の有無にかかわらず 95%以上の SVR が得られている。また、ゲノタイプ 2 型症例ではソホスブビル/リバビリン併用療法 (12 週間) により、治療歴の有無にかかわらず 90%以上の SVR が得られる。つまり、HCV ゲノタイプ 1 型・2 型に関しては、HCV 単独感染と HIV 共感染の治療効果に差は認めない。ただし、HCV 単独感染と同様、肝硬変を背景肝疾患に持つ場合、特に前治療無効例での治療効果はやや低い。

7-2-2-3. DAAs を抗 HIV 療法と併用する際の注意

DAAs 併用療法に用いるプロテーゼ阻害薬 (アスナプレビル、ペリタプレビル) は抗 HIV 薬との相互作用があるため、HIV 感染に対する治療には、これらの薬剤と薬剤相互作用の問題がない抗 HIV 薬 (ラルテグラビル、ドレグラビルなどのインテグラー阻害薬*、テノホビル/エムトリシタビン、ラミブジンなど一部の核酸型逆転写酵素阻害薬**など) を選択することが推奨される。また、
NS5A 阻害剤であるレジパスビルは、抗 HIV 薬としても使用されるテノホビルジソプロキシルフマル酸塩 (tenofovir disoproxil fumarate; TDF) の血中濃度を上昇させることが報告されている。いずれにしても抗 HIV 薬との併用に関しては、国外のガイドライン (AASLD ガイドラインなど) を参照の上、HIV の専門家に相談して行うことが推奨される。

【Recommendation】
● HIV/HCV の重複感染例に対しては IFN フリー DAA 製剤が第一選択である（エビデンスレベル 2a、グレード A）。
● HCV 単独感染と同一のレジメンで治療を行う（グレード C1）。
● DAA の選択にあたっては薬剤相互作用に十分に留意する（グレード C1）。

7-2-2-4. ゲノタイプ 3 型
本邦ではゲノタイプ 3 型の症例は比較的少なく、2016 年 5 月時点において健康保険で認可されている治療はない。ゲノタイプ 3 型は南アジアやヨーロッパでは最も多発遺伝子型であるが、日本でも血液製剤による感染者では 15%程度にみられる。
ゲノタイプ 3 型の症例は高率に脂肪肝を伴い 233)、線維化の進展も速く 234)、また肝細胞癌のリスクも高い 235)。Peg-IFN+リバビル併用療法の治療効果が不良であるため 236)、IFN フリー DAA 治療の役割が他の遺伝子型以上に期待される。
HIV/HCV (ゲノタイプ 3 型) に対する IFN フリー DAA 治療の成績が公表されている。ソハスブビル /リバビル併用療法が行われるが、ゲノタイプ 2 型と同じ 12 週間の投与では十分な効果は上がらず、24 週間投与によりはじめて 80%以上の SVR が達成可能である 231, 232)。しかし、上述の通り、現在本邦ではこれらの治療レジメンは保険適用外である。

7-3. 腎機能障害・透析例
7-3-1. CKD・透析患者における HCV 感染の現状
慢性腎臓病 (chronic kidney diseases; CKD) 患者における HCV 感染率は一般人口より高く、3.9% ～7.9%と報告されており 237-239)、腎機能が低下し CKD のステージが進行するほど HCV 抗体陽性率は上昇する 237, 238)。HCV 抗体陽性者は陰性者と比較して、1992 年以前に輸血や大きな手術を受けた頻度が高く、成因不明の腎疾患が多く、ALT が高い 239)。CKD 患者において、HCV 感染は腎機能低下のリスクである 238)。
また、透析患者においても HCV 感染は重大な問題である。日本透析医学会の集計によれば、2014 年末現在、本邦における透析患者数は約 32 万人であるが、透析患者における HCV 抗体陽性率は、2007 年の透析医学会の調査では 9.84%56)、2010年のOhsawaらの報告では 11.0%であった 240)。HCV 抗体陽性症例のうち HCV 持続感染者の割合は、2007年の透析医学会の調査では 64%（血中 HCV-RNA 陽性）56)、Ohsawaらの報告では 58.9%（HCV コア抗原陽性）であり、後者で
は透析患者全体における HCV 持続感染者の割合を 6.5％と報告している。透析施設の厳格な感染コントロールにより、透析患者における HCV 抗体陽性率は 1999 年以降年々低下しているものの（表 8）、男性、また、血液透析を長く受けている患者ほど HCV 抗体陽性率が高い（表 9）56。医療の進歩により、長期透析者が増加し生存期間が延長しているが、透析患者では HCV 感染のため生命予後が不良であることが示されている。Fabrizi らのメタ解析では、7 つの臨床研究 11,589 例の検討で、HCV 感染透析患者の生命予後が HCV 非感染透析患者に比して有意に不良であり、相対リスクは 1.34 であったことが示されている。また、HCV 感染者では非感染者と比較して、肝細胞癌や肝硬変など肝疾患に関連した死因が 5.89 倍多い59。

表 8 透析患者数と HCV 抗体陽性者の推移

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>透析症例数(人)</td>
<td>197,213</td>
<td>219,183</td>
<td>237,710</td>
<td>264,473</td>
<td>275,242</td>
</tr>
<tr>
<td>HCV 抗体陽性率</td>
<td>15.95%</td>
<td>13.88%</td>
<td>12.37%</td>
<td>10.22%</td>
<td>9.84%</td>
</tr>
<tr>
<td>HCV 抗体陽性者(人)</td>
<td>31,455</td>
<td>30,423</td>
<td>29,405</td>
<td>27,029</td>
<td>27,084</td>
</tr>
</tbody>
</table>

表 9 透析歴と HCV 抗体陽性率の推移

<table>
<thead>
<tr>
<th>透析歴</th>
<th>2 年未満</th>
<th>2 年～</th>
<th>5 年～</th>
<th>10 年～</th>
<th>15 年～</th>
<th>20 年～</th>
<th>25 年～</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV 抗体陽性率</td>
<td>7.55%</td>
<td>7.90%</td>
<td>7.86%</td>
<td>7.77%</td>
<td>10.75%</td>
<td>23.32%</td>
<td>44.81%</td>
</tr>
</tbody>
</table>

このように HCV 感染は、透析患者では生命予後を悪化させていることが明らかになっている。また、透析患者において、抗ウイルス療法は HCV 感染者本人の生命予後を改善するのみならず、感染源をなくすという意味もある。現在、透析患者の新規 HCV 感染のほとんどは院内感染と考えられており、院内感染防止の観点からも HCV 感染者への抗ウイルス療法を検討すべきである59。

以上より、CKD 患者においては腎機能低下のリスクとなり、透析患者では生命予後を悪化させていることが明らかになっており、CKD 患者・透析患者においては積極的に抗ウイルス療法を行うべきである。

【Recommendation】

- 透析患者における HCV 持続感染者の割合は 6.5％と報告され、男性、透析歴の長い患者ほど HCV 抗体陽性率が高い（エビデンスレベル 2b、グレード A）。
- HCV 感染は、CKD 患者においては腎機能低下のリスクとなり、透析患者では生命予後を悪化させている（エビデンスレベル 2b、グレード A）。
CKD患者・透析患者においては積極的に抗ウイルス治療を行うべきである（エビデンスレベル2b、グレードA）。

7-3-2. HCV感染と腎移植

わが国の生体腎移植患者のみを対象とした大規模な観察研究が行われている。1990年1月から2009年12月に生体腎移植を施行した全患者964名中、HCV抗体陰性患者504名とHCV抗体陽性患者50名において腎生着率と生存率を比較した結果、移植腎生着率はHCV抗体陰性群・HCV抗体陽性群それぞれ、88.4%・71.8%（60か月後）、75.6%・51.3%（100か月後）であり、HCV抗体陽性群の生存率は経年的に有意に低下した（p<0.001）。2群間での生存率も同様にHCV抗体陽性群において経年的に有意に低下していたことが明らかになった（p<0.001）。

一方、Mahmoudらは、HCV-RNA陽性の腎移植患者50例を対象に、移植前のIFN治療が移植後の拒絶や腎機能に与える影響を報告している。50例中18例で移植前にIFN治療が行われており、うち10例でHCV-RNAが陰性化した。移植後の経過を両群間で比較すると、IFN治療未施行群では移植前の貧血の程度が上昇、移植5年後の腎機能が有意に低下していた。

以上より、腎移植を予定しているHCV感染透析患者に対して、移植前に抗ウイルス療法を行うことにより、移植後の腎機能や生着率、生存率が改善する可能性がある。

【Recommendation】

• 腎移植を予定しているHCV感染透析患者に対して、移植前に抗ウイルス療法を行うことにより、移植後の腎機能や生着率、生存率を改善させるため、移植前に抗ウイルス療法を行うべきである（エビデンスレベル2b、グレードA）。

7-3-3. 慢性腎臓病・透析患者における抗ウイルス治療

7-3-3-1. ゲノタイプ1型

7-3-3-1-1. IFN-based interferon therapy

添付文書上、クレアチニンクリアランス50mL/分以下のCKD患者、透析患者に対するリバビリンの使用は禁忌であるため、ゲノタイプ1型に対するIFN-basedの抗ウイルス治療としてはIFNあるいはPeg-IFN単剤による治療が中心であり、難治例であるゲノタイプ1型・高ウイルス量症例に対する治療成績は不良であった。2008年の15例のHCV感染透析患者（12例がゲノタイプ1a/1b型、3例がHIV共感染、2例が肝硬変）、を対象としてPeg-IFNα2a 135μg/週+リバビリン200mg/日による治療を行った海外における前向き研究では、14例中10例が主に貧血のため治療中止を余儀なくされ、SVRは14例中4例（29%）にとどまったと報告されている。HCV感染透析患者への抗ウイルス治療（IFN単剤治療459例、Peg-IFN単剤治療38例、Peg-IFN+リバピリン併用治療49例）の成績をまとめたメタ解析が報告されている。全体のSVRは41％（95%CI; 33-49）、ゲノタイプ1
型の多い集団（≧50%）では38%、治療前ウイルス量の多い症例（≧800,000 IU/mL）では34%であった。

国内でPeg-IFNα 2a単独療法の前向き多施設共同研究（REACH study; Recommendation of Peg-IFNα 2a treatment for hepatitis C patients on Hemodialysis）が行われている247。対象症例はHCV感染透析患者56例で、治療はゲノタイプに関係なく、低ウイルス量症例（HCV-RNA 5.0 Log IU/mL未満）はPeg-IFNα 2a 90μg/週、高ウイルス量症例（HCV-RNA 5.0 Log IU/mL以上）はPEG-IFNα 2a 135μg/週をそれぞれ48週投与した。治療成績を図21に示す。ゲノタイプ1型でも低ウイルス量であれば88%（7/8）のSVRが得られたが、難治例であるゲノタイプ1型・高ウイルス量ではSVRが16%（5/33）にとどまっており、ゲノタイプ1型・高ウイルス量HCV感染透析患者へのIFN-based therapyの治療効果は極めて限定的であった。

一方、最近登場したIFNフリーダア製剤では、透析患者においても高い抗ウイルス効果が得られている。IFNフリーダア製剤の中でも、ソホスブビルは腎排泄であり、透析患者における使用は禁忌であるが、ダクラタスビル・アスナプレビル、およびオムビタスビル/パリタプレビル/リトナビル配合錠は肝代謝を受ける薬剤であり、透析患者における使用が制限されていない。このうち、ダクラタスビル/アスナプレビル併用療法では、性別、年齢、肝硬変の有無、前治療歴、IL28B等の患者背景によらず良好なウイルス学的効果を得られることが、日本人を対象とした2つの検討により示された248,249（表10）。それぞれ21例、28例のHCV感染透析患者に対してダクラタスビル/アスナプレビル併用療法を行っている。年齢はそれぞれ63.0歳（中央値）と65.5歳（平均）、男性優位であった。ALTの中央値は低く（18, 19.1）、HCV-RNAは5.7ないし5.89、肝硬変がそれぞれ4例（19%）、17例（60.7%）含まれていた。治療前の耐性変異は、L31はいずれの検討でも検出されていないものの、Y93変異はSudaらの検討の3例に検出された。

7-3-3-1-2. IFN-free antiviral therapy

7-3-3-1-2-1. 治療成績

一方、最近登場したIFNフリーDAA製剤では、透析患者においても高い抗ウイルス効果が得られている。IFNフリーDAA製剤の中でも、ソホスブビルは腎排泄であり、透析患者における使用は禁忌であるが、ダクラタスビル・アスナプレビル、およびオムビタスビル/パリタプレビル/リトナビル配合錠は肝代謝を受ける薬剤であり、透析患者における使用が制限されていない。このうち、ダクラタスビル/アスナプレビル併用療法では、性別、年齢、肝硬変の有無、前治療歴、IL28B等の患者背景によらず良好なウイルス学的効果を得られることが、日本人を対象とした2つの検討により示された248,249（表10）。それぞれ21例、28例のHCV感染透析患者に対してダクラタスビル/アスナプレビル併用療法を行っている。年齢はそれぞれ63.0歳（中央値）と65.5歳（平均）、男性優位であった。ALTの中央値は低く（18, 19.1）、HCV-RNAは5.7ないし5.89、肝硬変がそれぞれ4例（19%）、17例（60.7%）含まれていた。治療前の耐性変異は、L31はいずれの検討でも検出されていないものの、Y93変異はSudaらの検討の3例に検出された。
表10 日本人透析患者に対するダクラタスビル/アスナプレビル併用療法 [248, 249]

<table>
<thead>
<tr>
<th></th>
<th>Suda G et al. [248]</th>
<th>Toyoda H et al. [249]</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録透析患者数</td>
<td>21 例</td>
<td>28 例</td>
</tr>
<tr>
<td>年齢（中央値）</td>
<td>63.0 (50-79)</td>
<td>65.5±9.5</td>
</tr>
<tr>
<td>性別（男性/女性）</td>
<td>15 (71%) / 6 (29%)</td>
<td>16 (57.1%) / 12 (42.9%)</td>
</tr>
<tr>
<td>ALT (U/l)（中央値・平均値）</td>
<td>18 (9-55)</td>
<td>19.1±9.5</td>
</tr>
<tr>
<td>HCV-RNA (log_{10}IU/ml)</td>
<td>5.7 (2.9-6.8)</td>
<td>5.89±0.91</td>
</tr>
<tr>
<td>HCV genotype</td>
<td>1a 1 例 (5%)</td>
<td>1b 28 例 (100%)</td>
</tr>
<tr>
<td></td>
<td>No Data 1 例 (5%)</td>
<td></td>
</tr>
<tr>
<td>治療前耐性変異</td>
<td>L31 変異 0%</td>
<td>Y93 変異 3 例 (14%)</td>
</tr>
<tr>
<td>肝硬変（有/無）</td>
<td>4 (19%) / 17 (81%)</td>
<td>17 (60.7%) / 11 (39.3%)</td>
</tr>
<tr>
<td>腎機能障害の原因</td>
<td>糖尿病性腎症 8 例 (38%)</td>
<td>炎症性腎炎 12 例 (42.9%)</td>
</tr>
<tr>
<td></td>
<td>7 例 (33%)</td>
<td>14 例 (50.0%)</td>
</tr>
<tr>
<td></td>
<td>6 例 (29%)</td>
<td>2 例 (7.1%)</td>
</tr>
<tr>
<td>透析期間（中央値）</td>
<td>7 年 (1.5 年-33 年)</td>
<td>N/A</td>
</tr>
<tr>
<td>ウイルス学的効果 （HCV-RNA 陰性化率）</td>
<td>85.7%</td>
<td>89%</td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td>100%</td>
</tr>
<tr>
<td>治療成功例（SVR12）</td>
<td>95.5%</td>
<td>100%</td>
</tr>
<tr>
<td>治療不成功例</td>
<td>1 例 (5%): relapse</td>
<td>0 例</td>
</tr>
<tr>
<td>副作用</td>
<td>重篤例 1 例 (4.5%)</td>
<td>1 例 (3.6%) (肝癌再発)</td>
</tr>
<tr>
<td></td>
<td>死亡 0 例</td>
<td>死亡 0 例</td>
</tr>
<tr>
<td></td>
<td>中止例 1 例</td>
<td>1 例 (ALT 上昇)</td>
</tr>
</tbody>
</table>

最終的な治療効果（SVR12 達成率）は、Suda らの報告では 95.5% (20/21)、Toyoda らの報告では 100% (28/28) と、極めて良好であった。Toyoda らは、透析患者と非透析患者において早期 HCV 陰性化率を検討しているが、治療開始 2 週目 50.0% vs. 21.4%、4 週目 89.3% vs. 67.8%、12 週目 100% vs. 96.4% であり、透析群の方が早期に HCV 陰性化が得られており、SVR12 が得られなかった 1 例では投与終了後 4 週において再燃がみられたが、投与前の HCV-RNA を再度検討したところ、
D168E 変異が検出されたが、Y93 変異の存在した 3 例では SVR12 が得られた。以上より、腎機能障害のある患者においても、IFN フリーや DAA 治療による治療効果は高い可能性が示唆された。

一方、これらの検討では Y93 変異の存在する症例でも SVR が得られてはいるものの、これらはわずか 3 例のみであることから、ダクラタスビル/アスナプレビル併用療法を行うに当たっては、透析例においても非透析例と同様、治療前には極力 Y93/L31 変異を測定し、変異がないことを確認することが望ましい。

7-3-3-1-2-2. 安全性

ダクラタスビル・アスナプレビルはいずれも CYP3 によって代謝され、そのほとんどが糞便排泄となる。また、臨床的な効果には影響しないが、承認時の評価資料より、血液透析中の被験者における総ダクラタスビルの AUC は腎機能が正常な被験者に比べて 26.9% 高く、同様に蛋白非結合型ダクラタスビルの AUC は 20.1% 高くなり、アスナプレビルの AUC は腎機能が正常な被験者に比べて末期腎不全の被験者の方が 10.1% 低く、Cmax は 28.6% 高くなることが報告されている。しかし、Toyodaらの報告では、副作用の種類・頻度・重篤度において、透析患者では腎機能正常患者と差はなく、腎機能正常患者と同様用法・用量で治療を行うことが可能であることが示された 249。また、アスナプレビルによるものと考えられる肝機能障害による投与中止例についても両者に差はないが（透析群 1 例、腎機能正常群 3 例）、透析患者では ALT が腎機能正常者より低値であることから、治療中は慎重なモニタリングが必要である。肝機能障害が起こった場合ダクラタスビル・アスナプレビルの投与中止（またはアスナプレビルの減量）を検討する。これらの検討では肝機能障害により投与中止となった患者 2 例でも SVR12 が達成されている。

一方、オムビタスビル/パリタプレビル/リトナビル配合錠も肝代謝を受ける薬剤であり、腎機能障害・透析例に対する使用が制限されていない。しかし、国内第 3 相試験ではクレアチニン・クリアランス（CCr）50ml/分未満の腎障害患者は対象となっておらず、CKD ステージ 3 以上の症例に対する使用についてのエビデンスがない。また、透析患者でしばしば使用されているカルシウムチャネル拮抗薬との併用が禁忌ないし注意となっていることに十分留意する必要がある。

【Recommendation】

● 本邦における検討では、ゲノタイプ 1 型・HCV 感染透析患者に対するダクラタスビル/アスナプレビル併用療法の SVR12 達成率は 95% 以上と報告され、治療効果は高い（エビデンスレベル 2b、グレード A）。

● ダクラタスビル/アスナプレビル併用療法を行うに当たっては、透析例においても非透析例と同様、治療前には極力 Y93/L31 変異を測定し、変異がないことを確認することが望ましい（エビデンスレベル 6、グレード A）。

● 肝機能障害による中止例の頻度は腎機能正常患者と同程度であり、透析例においても原則としてダクラタスビル/アスナプレビルの用量調整は必要ない（エビデンスレベル 2b、グレード B）。
透析患者では ALT が腎機能正常患者よりも低値であることから、治療中は慎重なモニタリングが必要である（エビデンスレベル 2b、グレード B）。

7-3-3-2. ゲノタイプ 2 型
一方、ゲノタイプ 2 型に対しては腎機能正常例における第一選択であるソホスブビル/リバビリン併用療法は、腎機能低下例・透析例に対して禁忌であり、IFN-based therapy が主体となる。前述のREACH study では、Peg-IFNα 2a 単独療法のゲノタイプ 2 型・低ウイルス量症例に対する SVR は 100%であったものの、高ウイルス量症例では 44%（4/9）と低下していた。しかし、治療前の HCV-RNA が 6.5 Log IU/mL の症例に限定した場合 SVR は 88%（7/8）と高率であり、高い治療効果が期待できる。

【Recommendation】
- ソホスブビル/リバビリン併用療法は、ゲノタイプ 2 型の腎機能低下例・透析例に対して禁忌である（グレード D）。
- ゲノタイプ 2 型で、治療前の HCV-RNA が 6.5 Log IU/mL 未満であれば、Peg-IFNα 2a 単独療法でも高い効果が期待できる（エビデンスレベル 2a、グレード A）。

表11 CKD ステージ別 の IFNフリー DAA 製剤治療推奨 *1

<table>
<thead>
<tr>
<th>CKD ステージ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>5D</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR (mL/分/1.73m²)</td>
<td>≥90</td>
<td>60〜89</td>
<td>30〜59</td>
<td>15〜29</td>
<td><15 (透析例)</td>
<td></td>
</tr>
<tr>
<td>NSSA 変異あり</td>
<td>SOF/LDV</td>
<td>SOF/LDV</td>
<td>SOF/LDV</td>
<td>(推奨なし)</td>
<td>(推奨なし)</td>
<td>(推奨なし)</td>
</tr>
<tr>
<td>NSSA 変異なし*2</td>
<td>1. SOF/LDV</td>
<td>1. SOF/LDV</td>
<td>1. SOF/LDV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBV/PTV/r</td>
<td>OBV/PTV/r</td>
<td>(OBV/PTV/r*3)</td>
<td>DCV/ASV</td>
<td>DCV/ASV</td>
<td>DCV/ASV</td>
<td></td>
</tr>
<tr>
<td>DCV/ASV</td>
<td>DCV/ASV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT2</td>
<td>SOF/RBV</td>
<td>SOF/RBV</td>
<td>(SOF/RBV*4)</td>
<td>(適応外)</td>
<td>(適応外)</td>
<td>(適応外)</td>
</tr>
</tbody>
</table>

*1 肝硬変患者や高齢者では、肝によるクレアチニンの合成が低下していることに加えて筋肉量が減少しているため、クレアチニン (Cr) に基づく GFR 推定値（eGFRcreat）では真の GFR を過大評価する可能性がある。一方、腎機能評価の新たなバイオマーカーであるシスタチン C（CysC）は、筋肉
量、年齢、肝機能などの影響を受けないため、高齢者や肝硬変患者では CysC 値に基づき算出した eGFRcysの方が真の GFR との相関は良いと報告されている 251）。

*2 OBV/PTV/r 使用前には Y93 変異、DCV/ASV 使用前には Y93 変異・L31 変異がないことを確認する。

*3 OBV/PTV/r の国内第 3 相試験ではクレアチニン・クリアランス (CCr) 50mL/分未満の腎障害患者は対象となっておらず、CKD ステージ 3 以上の症例に対する使用についてのエビデンスがない。

*4 SOF/RBV は CCr が 50 mL/分の症例では禁忌である。なお、CCr (mL/分) (= 尿中 Cr (mg/dL) × 尿量 (mL/日)/血清 Cr (mg/dL)) から eGFR を推算する式として、eGFR=0.719 × CCr が使用されている。

7-4. 肝移植後再発例
7-4-1. 概論

HCV による非代償性肝硬変はわが国において主要な肝移植適応疾患の一つである 252）。日本肝移植研究会の報告によると、2014 年迄に行われたわが国における生体肝移植 7476 例のうち、併発する肝細胞癌 (n=897) を含む C 型肝炎症例全体で 1547 例 (20.7%) であり、胆道閉鎖症 (1985 例、26.6%) についても 2 番目の症例数である 252）。生体肝移植後の生存率は、手術手技あるいは周術期管理技術の向上にて全体として向上してきたが、C 型肝炎に対する肝移植においてはこれがあまりでない 253, 254）。日本肝移植研究会の報告によると、生体肝移植症例全体 (n=7476) の 1 年および 5 年生存率はそれぞれ 83.4%および 76.3%であるが、C 型肝炎症例 (n=650) においてはそれぞれ 79.6%および 70.0%である 252）。厚生労働科研事業・肝炎等克服緊急対策研究事業「多施設共同研究による肝移植後肝炎ウイルス新規治療の確立と標準化」（前原班）による Akamatsu らの報告では、C 型肝炎に対する 514 例の生体肝移植症例の 5 年および 10 年生存率はそれぞれ 72%および 63%であり、最も主要な死因は移植後 C 型肝炎再発によるものであった 253）。しかしながら移植後抗ウイルス治療によると SVR が得られた症例のグラフト生存率は SVR が得られなかった症例より有意に良好であった 253）。すなわち、C 型肝炎に対する肝移植においてその成績を向上させるには、抗ウイルス治療を成功させることが鍵となる。

7-4-2. 肝移植後 C 型肝炎の特徴

HCV 陽性症例において移植肝への HCV 再感染は必発であり、再感染は移植肝に血流を再開させた時に始まる 255, 256）。自己肝を摘出したいわゆる無肝期において、血液中の HCV-RNA 量はほぼ検出感度以下まで減少するが、再還流後数時間には急激に増加し再感染が成立する 255, 256）。そして肝移植後数か月後には肝移植前よりも通常 10 倍〜100 倍のウイルス量となり、組織学的にも慢性肝炎の像を呈するようになる 257）。そしてグラフト肝への再感染が成立すると、通常免疫抑制下にある移植肝においては、移植後 5 年以内に 20%〜5%の症例が肝硬変に至り、肝硬変に至った症例は年率 40%程の割合で非代償性肝硬変に移行すると報告されている 258, 259）。
病変の進行は症例により様々であるが、通常は移植後3か月から1年程度で組織学的に慢性肝炎に至る258, 259。線維化の進行に関しては非免疫抑制下のC型肝炎では0.1-0.2 Stage/年の速度で進行し、初感染から30年程度で肝硬変に至るが、移植後免疫抑制下では0.3-0.6 Stage/年の速度で進行し9.5年程で肝硬変に至ると報告されている260, 261。病状の進行には様々な因子が関与する。欧米でのHCV感染者に対する脳死肝移植では、高齢ドナー（>45歳）や、冷保存時間>12時間、心停止ドナー、30%以上の脂肪肝などいわゆるマージナルドナー肝を移植すると、虚血再灌流障害による様々なサイトカインの活性化からC型肝炎再発の進行が早まることが報告されている262-266。生体肝移植では、Akamatsuらはドナー年齢＞40歳、左葉グラフトの使用、移植後急性拒絶、抗ウイルス治療によりSVRが得られないことが、グラフト生存における予後不良因子であると報告している253。しかしながら、脳死および生体肝移植におけるこれらの報告はPeg-IFN+リバビリン併用療法のみが使用可能であった状況下での結果であり、DAAsによる治療が行われるようになった現在では異なる結果が得られる可能性が高い。

肝移植後C型肝炎再発の2-8%の症例では、胆汁うっ滞性肝炎として知られる再発様式で発症することが知られている267-271。胆汁うっ滞性肝炎は肝移植後数ヶ月以内に高度の黄疸を伴って発症する肝炎であり、高度な免疫抑制下で均一なHCVクローンが爆発的に増殖し、免疫反応を介さず肝細胞を直接障害することがその原因と考えられている[16]。Ikegamiらは、サイトメガロウイルス抗原が血中に出現するような過剰免疫下において、肝移植後2週間目のHCV-RNAが7.2 log IU/ml以上となることが、肝細胞のバーチャニングを主体とした組織所見に加えて診断に役立つことを報告した269。胆汁うっ滞性肝炎を発症した場合、有効な抗ウイルス治療が行われないと数ヶ月以内にグラフト死亡に至る259。

移植後C型肝炎治療の適応は、非代償性肝硬変ではない慢性肝炎、肝硬変あるいは胆汁うっ滞性肝炎、組織学的・血清学的にC型肝炎再発が明らかであり、急性あるいは慢性拒絶反応・胆管狭窄・グラフト血管狭窄や閉塞などC型肝炎以外のグラフト機能異常を来うる病態が否定できる症例である。

【Recommendation】

- HCV感染者に対する肝移植後肝機能異常を来たし、組織学的・血清学的にC型肝炎再発が明らかとなり、拒絶反応・胆管狭窄・グラフト血管病変などが否定され、非代償性肝硬変ではない症例に対しては、抗ウイルス治療を行うことが推奨される（エビデンスレベル2b、グレードA）。
- 胆汁うっ滞性肝炎に対しては、血清学的・組織学的診断のもと、早期に抗ウイルス治療を導入する必要がある（エビデンスレベル2b、グレードA）。
- 肝移植後C型肝炎再発に対する治療は、肝移植後免疫抑制療法、およびC型肝炎の病理・治療に精通した医療チームにより行われることが必要である（エビデンスレベル6、グレードA）。
7-4-3. 肝移植後再発に対する治療

肝移植後再発例に対する抗ウイルス治療においては、欧米を中心とした海外から発信されたエビデンスにおいて使用された IFN フリー-DAA combination レジメンと本邦で保険適用とされているレジメンが異なる。本邦では個々の IFN フリー-DAA 製剤の使用経験が少ないため、十分なエビデンスが蓄積されておらず、厚生労働科研究事業・肝炎等克服緊急対策研究事業「多施設共同研究による肝移植後肝炎ウイルス新規治療の確立と標準化」（研究代表者：九州大学消化器・総合外科教授 前原善彦、以下前原班）において検討が進められている。

7-4-3-1. ゲノタイプ 1b 型
7-4-3-1-1. IFN-based antiviral therapy

2011 年 11 月にテラプレビルがわが国において使用可能となるまで、移植後 C 型肝炎再発に使用可能なレジメンは Peg-IFN+リバビリン療法のみであった。しかしながら海外からの報告では、その SVR 率は 20〜40%程度とどまり、感染・汎血球減少・拒絶反応等により 30%の症例で治療中止、70%の症例で治療薬の減量が行われた。わが国における多施設研究でも、汎血球減少等の副作用による治療薬剤減量率が 40%、中止が 42%、そして SVR 率は 43%であった。Fukuhara らは、IL28B（rs8099917）の単塩基多型を解析し、それがドナー・レシピエント共に TT である場合、ドナー・レシピエントの何れかが T/G あるいは G/G を含む場合に有意に SVR 率が高い（54% vs. 11%, p=0.003）であることを報告した。一方 Levitsky らは、免疫抑制下にあるべき肝移植後に Peg-IFN を使用することにより 10 年の経過で 7.2%の症例に、急性あるいは慢性拒絶反応や形質細胞性肝炎などの免疫誘導性グラフト障害 (immune-mediated graft dysfunction; IGD) を発症し、IGD の発症がグラフト生存を逆に有意に低下させることを報告した。

以上のことから、ゲノタイプ 1b 型症例に対する IFN フリー-DAA 製剤による治療が可能となった現在、肝移植後再発例に対する Peg-IFN+リバビリン併用療法は推奨される。治療の緊急性が高い移植後重症 C 型肝炎で、DAA に対する高度耐性を有する症例でのみ Peg-IFN+リバビリン併用療法が適応となる可能性がある。

7-4-3-1-2. DAA+Peg-IFN+リバビリン療法

2011 年 11 月にテラプレビルが、2013 年 11 月にシメプレビルが発売され、Peg-IFN+リバビリンにNS3/4A プロテアーゼ阻害剤を追加して使用することが可能となった。しかし、テラプレビルは、安全性および薬剤相互作用に対する懸念から、肝移植後再発例に対する使用は容易ではなかった。すなわちチトクローム P450 の強力な阻害作用を有するテラプレビルを、同じく P450 にて分解されるタクロリムス・サイクロスポリンといった免疫抑制剤（カルシニューリン阻害剤）と併用すると、腎機能障害・高血圧・神経毒性等の性質を有するこれらカルシニューリン阻害の血中濃度がそれぞれ 70 倍および 4.6 倍に上昇することが報告された。薬剤相互作用に関しては治療中タクロリムスからサイクロスポリンに薬剤変更を行い、テラプレビル使用期間中はサイクロスポリンを通常使用量の 25%〜
50%から導入することにより対応可能であることが判明した。しかし、Coil らはテラプレビルによる腎機能障害、高度貧血により74%の症例が治療完遂できず、SVR 率は20%に留まったと報告した。わが国からの報告では、Ikegami らはテラプレビルの投与量を1500mg/日に減量し Peg-IFN+リバビリンに併用することで、64%の症例に輸血が必要であったものの100%の症例で治療を完遂し、SVR 率が81.8%であったことを報告した。

一方シメプレビルに関しては、カルシニューリン阻害剤との相互作用が軽微で、タクロリムス・サイクロスポリンのいずれも使用可能であり、しかも貧血や腎機能障害も重篤ではないことが本邦のプレリマリーな報告から明らかとなった。Ikegami らの検討では、シメプレビル使用下でのサイクロスポリンのトラフ/用量比はテラプレビルに比し有意に低値（5.1 vs. 1.2, p<0.01）であり、輸血を必要とするような貧血も 7.1%に認めたのみであった。しかし、有意差はないものの、テラプレビル併用療法に比しシメプレビル併用療法では SVR 率は低値（83.3% vs. 64.3%）であり、シメプレビル併用療法における再発症例ではいずれも NS3 における D168 に変異を生じた。さらに、シメプレビルあるいはテラプレビルを Peg-IFN+リバビリンと併用した26例のうち9例に IGD を発症し、ステロイドパルスあるいはサイモグロブリンによる治療が必要であった。

前原班では肝移植後 C 型肝炎に対するテラプレビル（n=36）およびシメプレビル（n=79）併用 Peg-IFN+リバビリン療法を行った症例を集積した。現時点における SVR 率はそれぞれ 69%および56%であり、満足できる結果ではなかった。特に、それぞれの治療法において Peg-IFN+リバビリン治療歴を有しない症例の SVR 率は86%および94%であったのに対して、治療歴を有する症例ではそれぞれ 58%および34%であった。テラプレビル・シメプレビル併用 Peg-IFN+リバビリン療法において治療不成功に関与する因子は、前治療歴における無効（NR）であった（p<0.001）。また副作用として IGD を 9.7%に認めた。

肝移植後 C 型肝炎再発に対するバニプレビル併用 Peg-IFN+リバビリン療法に関する報告はいまだにされていない。

【Recommendation】

- 肝移植後例は免疫抑制状態にくらべており、治療緊急性が高く移植後重症 C 型肝炎で、かつ DAA への高度耐性を有する症例などを除き、肝移植後再発例に対する IFN-based therapy（Peg-IFN+リバビリン併用療法、ないし DAA+Peg-IFN+リバビリン併用療法）は推奨されない（エビデンスレベル 4, グレード D）。

7-4-3-1-2. IFN-free antiviral therapy

海外からは肝移植後再発例に対する IFN フリー DAA combination による治療成績が報告されているが、本邦で使用可能なレジメンによる報告はない。Charlton らは 40％の肝硬変症例を含む肝移植後患者に対して 24 週のソホスブビル/リバビリン併用治療を行い、95%の治療完遂率および 70%の SVR 率を報告している。Reddy らは 111 例の肝移植後 C 型肝炎再発症例に対してソホスブビル
レジパスビル+リバピリン療法を12週あるいは24週継続した結果、Child-Pugh A、BおよびC症例それぞれのSVR率は96%、84%および63%であり、Child A-B症例ではそのほとんどで治療終了後にMELDスコアが改善したと報告した283。

ダクラタスビル/アスナプレビル併用療法を用いた肝移植後C型肝炎治療について、まずKawaokaらが症例報告を行っている284。さらに、前原班では現在まで74例のダクラタスビル/アスナプレビルを用いた肝移植後C型肝炎治療症例を多施設から集積した285。前治療歴としては54.1%の症例ではPeg-IFN+リバピリンが、また16.2%の症例ではシメプレビル+Peg-IFN+リバピリンによる前治療歴があった。主要免疫抑制療法はタクロリムスが93.2%、マイコフェノレート単剤が5.4%、サイクロスポリンが1.4%であったが、いずれの免疫抑制療法においても極端な濃度調整は要しなかった。

ステロイドは20.2%の症例で使用されていた。治療終了症例61例のうち、80.3%の症例でSVRが得られた。副作用としては感冒(n=4)、帯状疱疹(n=3)などの感染性合併症を含む20.2%の症例に発症したが、副作用による治療中止例はなかった。シメプレビル既往症例12例のうち、SVRが得られたのは2例(16.6%)のみであった。非SVRに関連する因子を解析したところ、シメプレビル+Peg-IFN+リバピリン療法の既往(p<0.001)およびNS3変異(p=0.019)が検出された。また、4例の維持透析患者においてダクラタスビル/アスナプレビルが使用され、特に副作用なく治療中(n=2)あるいはSVR(n=2)に至った。

これらの症例における耐性変異については、NS3領域D168変異は治療開始前46例で測定されており、1例に変異(D168V)がみられたが、この1例ではダクラタスビル/アスナプレビル併用療法も無効であった。NS5A領域のうちL31変異・Y93変異は、いずれも68例で測定され、5例で耐性変異を認めた。ダクラタスビル/アスナプレビル併用療法の治療成績はL31変異5例中2例がSVR、2例がviral breakthrough、1例が無効、またY93変異5例中3例がSVR、2例がviral breakthroughであった285。

一方、ソホスブビル/レジパスビル併用療法については、リバピリンを追加して治療を行ったReddyらの報告によると、安全かつ効果が高く、免疫抑制剤の濃度調整も要しない可能性が高い。今後、前原班によりデータ集積・解析を行う予定である。もう一つのIFNフリーDAA製剤であるパリタプレビル/オムビタスビル/リトナビル配合剤は、カルシニューリン阻害剤の分解系であるCYP3Aを阻害するリトナビルを含有するため、肝移植後の使用は困難である可能性が高い。

【Recommendation】

- **免疫抑制下にある肝移植後C型肝炎再発の治療**はIFN-free antiviral therapyが望ましい（エビデンスレベル4、グレードA）。
- **ゲノタイプ1b型肝移植後再発例に対するダクラタスビル/アスナプレビル併用療法によるSVRは80.3%と報告されている（エビデンスレベル2b、グレードA）。**
ダクラタスビル/アスナプレビル併用療法を行うに当たっては、肝移植後再発例においても治療前には極力 Y93/L31 変異を測定し、変異がないことを確認する（エビデンスレベル 6、グレード A）。

シメプレビル+Peg-IFN+リバビル治療歴を有する症例におけるダクラタスビル/アスナプレビル併用療法の SVR 率は 16.6%のみであった（エビデンスレベル 2b、グレード B）。

肝移植後再発例に対するソホスブビル/レジパスビル併用療法は、現状では使用経験が乏しいものの、今後第一選択となる可能性が高い（エビデンスレベル 6、グレード B）。

7-4-3-2. ゲノタイプ 2 型

ゲノタイプ 2 型の移植後 C 型肝炎再発に関しては Peg-IFN+リバビル療法が行われていたが、2015 年 5 月以降はソホスブビル/リバビル療法が使用可能となった。すでにゲノタイプ 1b 型の肝移植後再発例に対する治療において、ソホスブビル+リバビルの組み合わせにて免疫機抑制剤の極端な濃度調整の必要なく、安全に治療可能であった旨が海外から報告されている。ゲノタイプ 2 型の肝移植後 C 型肝炎再発例では、非代償性肝硬変あるいは重度腎機能障害などソホスブビルおよびリバビルの使用禁忌に該当しない症例であれば、ソホスブビル/リバビル併用療法が第一選択となる可能性が高い。

【Recommendation】

ゲノタイプ 2 型肝移植後再発例に対する抗ウイルス治療では、重度腎機能障害や非代償性肝硬変など使用禁忌に該当しない症例であれば、ソホスブビル/リバビル併用療法が今後第一選択となる可能性が高い（エビデンスレベル 2b、グレード B）。

（＊「7-4. 肝移植後再発例」の項を記すにあたり、吉住朋晴先生・前原善彦先生（九州大学消化器・総合外科）、および上田佳秀先生（京都大学消化器内科）のご協力をいただきました。ここに深く感謝申し上げます。）

7-5. 肝発癌後症例

C 型肝炎による肝細胞癌の多くは背景肝の線維化が進行しているため、肝細胞癌治療後の IFN 治療では SVR 率が高くなかった。一方、IFN フリー-DAA 治療では IFN 治療が困難な症例でも治療が可能であり、局所根治が得られて Cancer free の状態であれば、HCV 排除を目指した抗ウイルス治療が適応となる。しかも線維化進行例でも高率に SVR が達成されるため、発癌後でも多くの症例において HCV 排除が可能である。

7-5-1. IFN-β-based antiviral therapy

発癌後のIFN 単独治療には多くの報告があり、そのほとんどが日本からである。Ikeda らは肝切除やエタノール局注療法で根治した肝細胞癌を対象とし、IFN β 治療 (600 万単位、週 2 回、36 か月
行った10例と非投与の10例を比較した。その結果、IFN投与によるSVRはなかったが、肝細胞癌の1年再発率が0% vs 62.5%、2年再発率が0% vs 100%であり、IFN投与例で再発率が有意に低いことが示された280。Kubo, Nishiguchiらは、肝切除によって根治した肝細胞癌30例をIFN投与群(IFNα600万単位、連日2週間、週3回14週間、週2回88週間)と非投与群に無作為割付けした比較試験を行った。2例でSVRが得られ、観察期間中央値1087日時点ではIFN投与群の再発率は非投与群と同等であったが、2回目再発率は有意に低率であり、生存率も非投与群と比較し有意に高率であった287, 288。Kubo, Nishiguchiらは、肝切除によって根治した肝細胞癌30例をIFN投与群(IFNα2b300万単位、週3回、4か月間)22例と非投与群24例を比較した。SVR率は50%であった。Miyaguchiらは、肝動脈塞栓療法とエタノール局注療法で根治した肝細胞癌症例のうち、低ウイルス量であった46例を対象とした、IFN投与群(IFNα2b300万単位、週3回、4か月間)22例と非投与群24例を比較した。SVR率は50%であった。IFN投与群の1回目再発率は非投与群と同等であったが、2回目再発率は有意に低率であり、生存率も非投与群と比較し有意に高率であった289。Shiratoriらは、エタノール局注療法で根治した肝細胞癌IFN投与群(IFNα600万単位、週3回、4か月間)49例と非投与群25例に無作為割付けした。SVR率は29%であった。1回目再発は両群間で差がなかったが、2回目以降の肝癌再発は有意にIFN投与群で低く、また生命予後も良好であった290。Sakaguchi, Kudoらは、ラジオ波焼灼療法で根治した肝細胞癌にIFNα2b300万単位、週2回、あるいはPeg-IFNα2a90μg、週1回あるいは隔週1回した43例と臨床背景をマッチさせた非投与84例比較した。SVRは2例のみであったが、IFN投与群では再発率が有意に低率であり、生存率が有意に高率であった291, 292。このように、日本の多数の報告により、肝細胞癌根治後におけるIFN療法の有用性が明確に示されている。

海外からは、イタリアのMazzaferroらが、肝切除後にIFN投与(IFNα600万単位、週3回、48週間)をおこなった76例と非投与の74例を比較した。早期の再発率には差がないものの、IFN投与群では2年以降の再発率に有意に低率であることを示した293。生命予後には差がなかった。また、肝動脈塞栓術やラジオ波焼灼術後にリバビリン併用IFN治療を行い、半数にウイルス駆除が得られ、再発抑制や生存率向上が認められたとの台湾からの報告もある294。2014年に報告されたメタ解析では、IFN治療により生存率が向上し(Risk比0.44、95%信頼区間0.34-0.48), 1年以内の早期再発(Risk比0.69、95%信頼区間0.51-0.93), 2年以内の早期再発(Risk比0.69、95%信頼区間0.58-0.82), および2年以降の後期再発(Risk比0.68、95%信頼区間0.49-0.94)が有意に抑制されることが示された295。IFN単独療法のエビデンスが蓄積している一方で、Peg-IFN+リバビリン併用療法の報告は少ない。Hagiharaらは肝切除、ラジオ波焼灼療法、エタノール局注療法、マイクロ波凝固療法などで根治した肝細胞癌に対しPeg-IFN単独療法を施行した15例、Peg-IFN+リバビリン併用療法を施行した22例とIFN非投与の145例を比較した。SVRが得られた9例では、2回目の再発率が有意に低率で、生存率が有意に高率であった296。この結果から、抗ウイルス治療の進歩によりSVR率が向上することで予後改善効果も向上する可能性があると期待される。Kanogawaらによる肝癌根治後にPeg-IFNα+リバビリン併用療法を施行した178例の検討では、SVR症例での肝癌再発抑制が示された297。
外からは台湾のHsuらが肝切除後にPeg-IFN+リバビリン併用療法を施行した213例と、臨床背景をマッチさせた852例を比較した結果を報告している299）。この大規模データによると、1、3、5年累積再発率はPeg-IFN+リバビリン併用療法施行例では16.2%、41.8%、52.1%であり、非投与例の24.5%、54.3%、63.9%よりも有意に低率であった。多変量解析でも、治療をすることで再発は有意に低下し、そのハザード比は0.64であった。また1、3、5年累積死亡率は、治療群で2.8%、10.8%、15.4%に対して、非投与群では6.9%、24.8%、47.0%であり、治療により有意に生存率が向上していた。このような豊富なエビデンスから、肝細胞癌根治後にIFNを用いた抗ウイルス治療を行うことにより、肝細胞癌の再発抑制効果および生存予後の改善効果が得られることは確実と考えられる。75-2．IFN-free antiviral therapy

IFNフリーDAA治療では、IFN治療が困難な症例も治療可能であることから治療対象が広がり、またIFN難治例でも高率にSVRが得られる。このようなウイルス排除成功率の向上が、さらなる再発抑制や予後改善につながると期待される。しかし、IFNフリーDAA治療による肝細胞癌の再発抑制効果、あるいは生存率の改善効果に関するデータは現時点では報告されていない。IFN治療が、HCV排除とは別の機序、すなわちIFNの抗腫瘍効果により肝細胞癌の再発を抑制している可能性も考えられる299、300）。肝細胞癌を発症し根治が得られた症例に対するIFNフリーDAA治療の妥当性は、ウイルス排除成功率だけでなく、再発抑制効果と生存率改善効果という視点からも、IFNを含む治療と比較して今後検証されるべきである。

【Recommendation】

● 肝細胞癌を発症した症例であっても、局所根治が得られCancer freeの状態であればウイルス排除を目指した抗ウイルス治療が可能である（エビデンスレベル2b、グレードA）。　

● 肝細胞癌根治後のIFN-based抗ウイルス療法は、肝細胞癌の再発を抑制し、生命予後を改善する（エビデンスレベル1a、グレードA）。　

● IFNフリーDAA治療ではより多くの症例でHCV排除が可能となり、さらなる再発抑制や予後改善につながると期待されるが、現時点では成績が報告されていない。肝発癌後のIFNフリーDAA治療の妥当性は今後検証される必要がある（エビデンスレベル6、グレードC1）。　

8．肝庇護療法

肝庇護療法はHCVの排除を目的とするのではなく、肝炎を沈静化し肝組織の線維化進展を抑えることを目的とする治療法である。C型慢性肝炎で肝庇護療法の適応になるのは、AST、ALT値が異常を示す患者で、IFN等の抗ウイルス療法が施行できない患者、抗ウイルス療法でウイルス排除ができない患者、抗ウイルス療法を希望しない患者などである。肝庇護療法の中でも科学的に有用性が示されているのはウルソデオキシコール酸(ursodeoxycholic acid; UDCA)と強力ネオミノファーゲンシー(Stronger Neo-minophagen C; SNMC)である。8-1．ウルソデオキシコール酸(UDCA)
UDCA は胆汁酸製剤であり、1日 600 mg～900 mg の投与が保険適用となっている。UDCA の肝炎に対する作用機序は肝細胞保護作用が主体であるが、細胞障害性の胆汁酸が UDCA に置き換わることによって肝細胞膜が保護されること、抗酸化ストレス作用、免疫調節作用、抗アポトーシス作用などの機序も想定されている 301)。

UDCA の肝機能改善効果は、1日 150 mg 投与から認められている 302, 303)。全国多施設で施行された二重盲検試験では、UDCA 150 mg/日投与群に比べ 600 mg/日および 900 mg/日投与群での AST, ALT 値、γ-GTP 値は有意に改善していた 302)。従って、現在では C 型慢性肝炎に対する UDCA の投与量は 600～900 mg/日が一般的である。副作用は、胃部不快感、下痢、便秘などの消化器症状が認められるが、比較的軽いことが多い。UDCA の発癌抑制効果についてのレトロスペクティブな研究では肝細胞癌の発生が有意に少なかったとも報告されている 304)。

8-2. 強力ネオミノファーゲンシー（SNMC）

SNMC は甘草の成分であるグリチルリチンが主成分であり、肝障害への作用機序はグリチルリチンの持つ弱ステロイド作用による抗炎症作用、肝細胞膜の保護作用などである。これらの作用によって ALT 値の改善をみると考えられている。1日 40 ml を1か月間投与する日本での二重盲検試験において、SNMC 投与群はプラセボ群よりも有意に AST, ALT 値の改善が得られた 305, 306)。投与量は、40～100 ml を連日または間歇投与するが、日本で行われた用量比較試験では 40 ml 投与よりも 100 ml 投与の方が有意に ALT 値の改善が認められた 307, 308)。また、SNMC の長期投与はコントロール群よりも有意に肝硬変症への進展を抑制していた 309)。副作用としては、低カリウム血症、高血圧症などがある。

SNMC の発癌抑制効果については、慢性肝炎症例において、投与群が非投与群に比較して有意に肝発癌率が低かったという報告がある 309, 310)。さらに IFN 療法が無効であった症例においても SNMC の投与で肝発癌が有意に低いと報告されている 311, 312)。

8-3. ウルソデオキシコール酸と強力ネオミノファーゲンシーの併用療法

SNMC 単独と SNMC に UDCA を併用した併用療法の2群での無作為コントロール試験では、併用群で有意に ALT 値の改善率が高かった 312)。このように併用療法は炎症の沈静化に有用である。

【Recommendation】

● C 型慢性肝炎に対する肝庇護療法として UDCA の内服・SNMC の注射、および両剤の併用療法が推奨される（エビデンスレベル 2b、グレード B）。

9. 瀉血療法

C 型慢性肝炎においては鉄代謝が重要な役割を演じている。鉄は体内ではヘモグロビンをはじめとした重要な蛋白構成成分として用いられる必須金属である。しかし鉄が過剰に存在すると細胞障害性の強いヒドロキシラジカルなどが生成され、酸化ストレスの原因となりうる。C 型慢性肝炎では鉄過剰による酸化ストレスが病変の進展の一因となっているため、瀉血療法が補助的治療として考案さ
れた。また瀉血療法では鉄制限食を併用することも大切である。瀉血療法の適応は、肝庇護療法と同様で AST、ALT 値が異常を示す患者で、IFN 等の抗ウイルス療法が施行できない患者、抗ウイルス療法でウイルス排除ができない患者、抗ウイルス療法を希望しない患者などである。

1994 年に C 型慢性肝炎症例で瀉血療法にて ALT 値の低下が認められたことが日本から報告された 316。さらに国内の多施設で行われた 3か月間の randomized, controlled study で、瀉血療法の ALT 値改善効果が認められた 315。また瀉血療法によって ALT 値が 50%以上低下する症例は 80%、ALT 値が正常化する症例は 40～70%と報告されている 316, 317。組織学的検討では、長期的な瀉血療法は組織の進展防止 318、さらに改善を認めたと報告されている 319。さらに長期的な瀉血療法によって、有意に肝発癌が抑制されたと報告されている 316。

瀉血療法は、一般的には 1 回 200～400 ml を 1～2 週おきに行い、フェリチン値を 20 ng/ml 以下まで低下させることを目標とする。ヘモグロビン値が 9～10 g/dl 以下になった場合は、瀉血を中止し造血能の回復を待つ。目標達成後は、フェリチン値、ヘモグロビン値を参考に、適宜瀉血療法を追加する。副作用は、迷走神経反射による徐脈、血圧低下が起こることがまれにある。

瀉血は UDCA または SNMC との併用で相加的な効果が認められる。UDCA と瀉血療法の併用では、UDCA 単独投与よりも ALT 値の低下が認められている 320。また SNMC との併用療法では、SNMC を投与する際に、少量の瀉血を併用することによって ALT 値がさらに改善すると報告されている 321。瀉血とは異なる作用機序の治療を組み合わせることによって、さらに ALT 値を改善できる。

【Recommendation】

- C 型慢性肝炎に対して瀉血療法は有用な治療である。また肝庇護療法としての UDCA の内服、SNMC の注射との併用療法も考慮すべきである（エビデンスレベル 2b、グレード B）。
文 献

13) Takimoto M, Ohkoshi S, Ichida T, et al. Interferon inhibits progression of liver fibrosis and reduces the risk of hepatocarcinogenesis in patients with chronic hepatitis C: a retrospective multicenter analysis of

83) Raison CL, Miller AH. The neuroimmunology of stress and depression. Semin Clin

94) 中外製薬. 抗ウイルス剤「コペガス」錠添付文書. 2011.

95) MSD 株式会社. 抗ウイルス剤「レベトール」カプセル添付文書. 2011.

114) 田辺三菱製薬. テラビック錠 250mg 使用成績調査（全例調査）中間集計 Vol.5. 2013.

115) 田辺三菱製薬. 抗ウイルス剤「テラビック錠 250mg」添付文書. 2014.

133) ヤンセンファーマ株式会社. ソブリアードカプセル 100mg 使用成績調査. 2015.

134) ヤンセンファーマ株式会社. 抗ウイルス剤「ソブリアードカプセル 100mg」添付文書. 2013.

139) MSD 株式会社. バニヘップ インタビューフォーム. 2014.

144) Lok AS, Gardiner DF, Lawitz E, et al. Preliminary study of two antiviral agents for hepatitis C

147) ブリストル・マイヤーズ株式会社. ダクルインザ・スンベプラ 市販直後調査報告. 2015.

148) ブリストル・マイヤーズ株式会社. ダクルインザ錠 インタビューフォーム. 2014.

149) ブリストル・マイヤーズ株式会社. スンベプラカプセル インタビューフォーム. 2014

160) ギリアド・サイエンシズ株式会社. 抗ウイルス剤「ソバルディ」錠 400mg 添付文書. 2015.

162) Afdhal N, Zeuzem S, Kwo P, et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1

166) ギリアド・サイエンシズ株式会社. ハーボニー配合錠 インタビューフォーム. 2015.

167) ギリアド・サイエンシズ株式会社. ハーボニー配合錠 「市販直後調査」第3回中間報告. 2016.

170) アッヴィ合同会社. ヴィキラックス配合錠 添付文書. 2015.

171) アッヴィ合同会社. ヴィキラックス配合錠 インタビューフォーム. 2015.

172) ギリアド・サイエンシズ株式会社. ハーボニー配合錠 「市販直後調査」第5回中間報告. 2016.

178) Inoue Y, Hiramatsu N, Oze T, et al. Factors affecting efficacy in patients with genotype 2 chronic hepatitis C treated by pegylated interferon alpha-2b and ribavirin: reducing drug doses has no impact on

183) 泉並木, 金子周一, 西口修平, 他. C 型代償性肝硬変に対するペグインターフェロン α-2a(40KD)とリバビリン併用療法の有効性および安全性の検討 臨床第 II/III 相試験. 消化器内科. 2011; 53: 335-42.

210) ブリストルマイヤーズスクール株式会社. ダクルインザ・スンベプラ 適正使用のお願い. 2016.

249) Toyoda H, Kumada T, Tada T, et al. Safety and efficacy of dual direct-acting antiviral therapy
(daclatasvir and asunaprevir) for chronic hepatitis C virus genotype 1 infection in patients on hemodialysis.

J Gastroenterol. 2016.

肝炎治療ガイドライン作成に関する利益相反について

日本肝臓学会肝炎治療ガイドラインの作成委員は、関連疾患に関与する企業との間の経済的関係につき、以下の基準について各委員より利益相反状況の申告を得た。

委員等はすべて、肝炎治療ガイドラインの内容に関して、ウイルス性肝炎および関連疾患の医療・医学の専門家あるいは専門医として、科学的および医学的公正さを妥当性を担保し、対象となる疾患の診療レベルの向上、対象患者の健康促進・QOLの向上を旨として策定作業を行った。

申告された企業名は下記の通りである（2014年1月1日~2014年12月31日まで）。なお、中立の立場にある出版社や団体は含まない。（企業名は、2015年12月現在）

1. 臨床研究に関連する企業・法人組織や営利を目的とした団体（以下、企業・組織や団体という）の役員、顧問職については、1つ的企业・組織や団体からの報酬額が年間100万円以上とする。
 (無)

2. 株式の保有については、1つ的企业についての年間の株式による利益（配当、売却益の総和）が100万円以上の場合、あるいは当該全株式の5%以上を所有する場合とする。
 (無)

3. 企業・組織や団体からの特許権使用料については、1つ的企业・組織や団体からの年間100万円以上とする。
 (有) ㈱エス・アールエル

4. 企業・組織や団体から、会議の出席（発表）に対し、研究者を拘束した時間・労力に対して支払われた日当（講演料など）については、1つの企業・団体からの年間の講演料を合計50万円以上とする。
 (有) MSD㈱、ブリストル・マイヤーズ㈱、味の素製薬㈱、大日本住友製薬㈱、グラクソ・スミスクライン㈱、田辺三菱製薬㈱、ヤンセンファーマ㈱、アッヴィ合同会社、大塚製薬㈱、中外製薬㈱

5. 企業・組織や団体がパンフレットなどの執筆に対して支払った原稿料については、1つ的企业・組織や団体からの年間の原稿料を合計50万円以上とする。
 (無)

6. 企業・組織や団体が提供する研究費については、1つ的企业・団体から臨床研究（受託研究費、共同研究費、委託経理金など）に対して支払われた総額が年間100万円以上とする。
 (無)

7. 企業・組織や団体が提供する治験費、奨学（奨励）寄付金については、1つ的企业・組織や団体から、申告者個人または申告者が所属する部局（講座・分野）あるいは研究室の代表者に支払われた総額が年間100万円以上の場合とする。
 (有) 中外製薬㈱、MSD㈱

8. 企業・組織や団体が提供する寄付講座に所属している場合とする。
エーザイ㈱、㈱ミノファーゲン製薬、中外製薬㈱、東レ㈱、ブリストル・マイヤーズ㈱、MSD㈱、大日本住友製薬㈱、

その他、研究、教育、診療とは無関係な旅費、贈答品などの提供については、1つの企業・組織や団体から受けた総額が年間5万円以上とする。

（無）
資料1 C型慢性肝疾患（ゲノタイプ1型・2型）に対する治療フローチャート

ダクラタスピル/アスナプレビル併用療法、ソホスブビル/リバビリン併用療法、ソホスブビル/レジパスビル併用療法、オムビタスピル/バリタスピル/リトナビル併用療法による抗ウイルス治療に当たっては、以下の4点に留意すること。

1. 経口薬による抗ウイルス治療は、ウイルス性肝疾患の治療に十分な知識・経験をもつ医師により、適切な適応判断がなされた上で行う。
2. 非代償性肝硬変を対象とした臨床試験は行われておらず、安全性も確認されていない。非代償性肝硬変症例では投与を行うべきではない。
3. ダクラタスピル/アスナプレビル治療の非著効例で、既にY93/L31変異が惹起されている症例への対応には、難易度が高い総合的な判断を要するため、このような症例の適応判断ならびに治療方針は、ウイルス性肝疾患の治療に十分な知識・経験を持つ医師によって検討される必要がある。
4. このような症例へのソホスブビル/レジパスビル治療の適応判断ならびに治療方針は、発癌リスクならびに変異例に対してソホスブビル/レジパスビル治療を行う場合の著効率とさらなる複雑な多剤耐性獲得のリスクを十分に勘案して方針を決定する。

1. 慢性肝炎/ゲノタイプ1型（DAA治療歴なし）※1

<table>
<thead>
<tr>
<th>1型</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>初回治療</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peg-IFN(IFN)/RBV治療歴なし※2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. SOF/LDV（重度腎障害なし）※3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. DCV/ASV（Y93/L31変異なし）※5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. SMVまたはVAN/Peg-IFN/RBV併用※6※7（IL28B major type）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>再治療</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peg-IFN(IFN)/RBV治療歴あり</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. SOF/LDV（重度腎障害なし）※3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. DCV/ASV（Y93/L31変異なし）※5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. SMVまたはVAN/Peg-IFN/RBV併用（前治療再燃例※6※8）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※1 DAA治療歴なし：DAA治療歴がないことを指す。
2. 慢性肝炎/ゲノタイプ1型・2型（プロテアーゼ阻害剤/Peg-IFN/RBV 前治療の非著効例）

<table>
<thead>
<tr>
<th>前提治療</th>
<th>推奨</th>
<th>非推奨</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMV/Peg-IFN/RBV併用</td>
<td>SOF/LDV※1</td>
<td>DCV/ASV※2\text{&} OBV/PTV/r※2\text{&}VAN/Peg-IFN/RBV併用※2</td>
</tr>
<tr>
<td>VAN/Peg-IFN/RBV併用</td>
<td>SOF/LDV※1</td>
<td>DCV/ASV※2\text{&} OBV/PTV/r※2\text{&}SMV/Peg-IFN/RBV併用※2</td>
</tr>
<tr>
<td>TVR/Peg-IFN/RBV併用</td>
<td>SOF/LDV※1</td>
<td>SMV/Peg-IFN/RBV併用※3\text{&}VAN/Peg-IFN/RBV併用※3\text{&}DCV/ASV※3\text{&} OBV/PTV/r※3</td>
</tr>
</tbody>
</table>

※1 重度の腎機能障害(eGFR＜30mL/分/1.73m²)又は透析を必要とする腎不全の患者に対するSOFの投与は禁忌である。
前治療により誘導されたD168変異をもつ症例ではDCV/ASV療法の著効率が低いことが想定され、またVANあるいはSMV/Peg-IFN/RBV併用治療に対するD168変異の影響についてのエビデンスがないため、原則として推奨されない。

再治療の効果についてのエビデンスがないため、推奨されない。ただし、テラプレビル併用療法の副作用のため薬剤投与量が不十分であった症例では選択肢となる。

3. 慢性肝炎/ゲノタイプ1型（DCV/ASV前治療の非著効例）※1

<table>
<thead>
<tr>
<th>IFN適格性</th>
<th>推奨</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN適格※2</td>
<td>SMV/Peg-IFN/RBV併用※3</td>
</tr>
<tr>
<td>1型</td>
<td>VAN/Peg-IFN/RBV併用※3</td>
</tr>
<tr>
<td>IFN不適格・不耐容※4※5</td>
<td>SOF/LDV（Y93・L31多重変異なし）※6</td>
</tr>
</tbody>
</table>

※1 DCV/ASV治療の非著効例で、既にY93/L31変異が惹起されている症例への対応には、難易度が高い総合的な判断を要するため、このような症例の適応判断ならびに治療方針は、ウイルス性肝疾患の治療に十分な知識・経験を持つ医師によって検討される必要がある。

※2 IFN投与が可能である場合には、薬剤耐性変異の存在が問題とならないIFN-based therapyを行なう。

※3 SMVまたはVAN/Peg-IFN/RBV治療を行う場合には、D168変異を測定し、D168変異がないことを確認する。

※4 IFNが使用できない場合には、さらなる複雑な薬剤耐性変異の出現を防ぐため、詳細な薬剤耐性を精査しその結果を踏まえた上で適切な治療を選択する。

※5 DCV/ASV治療と同部位に変異が惹起される可能性があるOBV/PTV/α治療は推奨されない。

※6 SOF/LDV治療を選択する場合には、Y93/L31変異を含めた耐性変異を詳細に測定し、少なくともL31・Y93多重変異がないことを確認する。DCV/ASV治療により誘導されたL31・Y93多重変異をもつ症例ではSOF/LDV治療の有効性は確認されておらず、再治療の効果についてのエビデンスがない。このような症例の適応判断ならびに治療方針は、発癌リスクならびに変異例に対してSOF/LDV治療を行う場合の著効率とさらなる複雑な多剤耐性獲得のリスクを十分に勘案して方針を決定する。
4. 慢性肝炎/ゲノタイプ2型※1 ※2 ※3 ※4

治療法の選択においては、IFN-based therapy には発癌抑制のエビデンスがあることを考慮する。

※2 高齢者、線維化進展例などの高発癌リスク群は早期に抗ウイルス療法を行う。
※3 RBV併用をしないPeg-IFN(IFN)単独の既治療例は初回治療に含む。
※4 1型と2型の混合感染の治療は、1型に準じてSOF/LDVで治療する
※5 重度の腎機能障害(eGFR<30mL/分/1.73m²)又は透析を必要とする腎不全の患者に対するSOFの
投与は禁忌である。
※6 IFN未治療・高ウイルス量の保険適応は、Peg-IFNα-2b/RBVのみである。
※7 Peg-IFN(IFN)単独療法ならびにRBV併用療法の再燃例。

5. 代償性肝硬変(初回治療・再治療)※1

※1 Peg-IFN/RBV併用も選択肢となる。
※2 重度の腎機能障害(eGFR<30mL/分/1.73m²)又は透析を必要とする腎不全の患者に対するSOF
の投与は禁忌である
※3 Genotype1aに対するOBV/PTV/rの有効性は確立していない。Child-Pugh分類grade Bに対する
投与は禁忌である。原則としてカルシウム拮抗薬の併用は推奨されない。CYP3A、P-gp、BCRP、
OATP1B1/1B3を基質とする薬剤との併用にあたっては用量調節を考慮する(資料3参照)。
OBV/PTV/r 治療前には、極力 Y93 変異を測定し、変異がないことを確認する。OBV/PTV/r 治療が非著効となった場合に惹起される多剤耐性ウイルスに対しては、現時点で確立された有効な治療法はないことを考慮に入れる。

※4 Genotype1b は DCV/ASV も選択肢となる。ただし、DCV/ASV 治療前には、極力 Y93/L31 変異を測定し、変異がないことを確認する。また、DCV/ASV 治療が非著効となった場合に惹起される多剤耐性ウイルスに対しては、現時点で確立された有効な治療法はないことを考慮に入れる。
資料2 IFN-based DAAs の併用禁忌・併用注意薬 （併用禁忌、併用注意）
（2016年5月現在の各添付文書より。ただし国内未承認薬は省略）

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>主な商品名</th>
<th>TVR</th>
<th>SMV</th>
<th>VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>代謝系薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>スタチン</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アトルバスタチン</td>
<td>リビートール、カデュエット</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シンバスタチン</td>
<td>リポバス等</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ビタバスタチン</td>
<td>リパロ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>プラバスタチン</td>
<td>メパロチン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フルバスタチン</td>
<td>ローコール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロスバスタチン</td>
<td>クレストール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>糖尿病薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>グリベンクラミド</td>
<td>オイグルコン、ダオニール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ナテグリニド</td>
<td>スターシス、ファスティック</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レバグリニド</td>
<td>シュアポスト</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エゼチミブ</td>
<td>ゼチーア</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コルヒチン</td>
<td>コルヒチン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コルヒチン（肝臓または腎臓に障害のある患者に使用する場合）</td>
<td>コルヒチン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>感染症薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗結核薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リファブチン</td>
<td>ミコブチン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リファンビシン</td>
<td>アプテシン、リファジン、リマクタン等</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗 HIV 薬（HIV プロテアーゼ阻害薬）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アタザナビル硫酸塩</td>
<td>レイアタッツ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>インジナビル硫酸塩等</td>
<td>クリキシンバ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>チャルダバリウム硫酸塩</td>
<td>インピラーゼ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネルフィナビルメシル酸塩</td>
<td>ブリジスタ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホスアフサブリナチアカルシウム硫酸塩</td>
<td>ブリジスタ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リトナビル含有剤</td>
<td>ノービア等</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗 HIV 薬（インテグラーゼ阻害薬）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラルテグラビル</td>
<td>アイセントレス</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗 HIV 薬（非ヌクレオジド系逆転写酵素阻害薬）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エトラビリン</td>
<td>インテレンス</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エファビレンツ</td>
<td>ブロックリン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネビラビリン</td>
<td>ブラミューン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>楽剤名</td>
<td>主な商品名</td>
<td>TVR</td>
<td>SMV</td>
<td>VAN</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>抗 HIV 薬
（非ヌクレオシド系逆転写酵素阻害薬）（続）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リルビビリン</td>
<td>エジェラント</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗 HIV 薬（その他）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コビシスタットを含有する製剤</td>
<td>スタリビルド</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗菌薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エリスロマイシン</td>
<td>エリスロシン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クラリスロマイシン</td>
<td>クラリス、クラリシッド</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗真菌薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イトラコナゾール</td>
<td>イトリゾール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ケトナゾール</td>
<td>(経口・注射は国内未承認)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フルコナゾール</td>
<td>ジフルカン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ミコナゾール</td>
<td>オキシロッド</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホスフルコナゾール</td>
<td>プロジフ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリコナゾール</td>
<td>プライオイン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗ウイルス薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>テノホビルジソプロキシルフマル酸塩</td>
<td>テノセット</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>循環器薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caチャネル拮抗薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アムロジピン</td>
<td>アムロジン、ノルバスク</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニカルジピン</td>
<td>ベルジピン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニソルジピン</td>
<td>バイミカード</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニフェジピン</td>
<td>アダラート</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フェロジピン</td>
<td>スプレンジール、ムノバール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ジルチアゼム</td>
<td>ヘルペッサー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベラパミル塩酸塩</td>
<td>ワソラン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アンギオテンシン受容体拮抗薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オルメサルタン</td>
<td>オルメテック</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>テルミサルタン</td>
<td>ミカルディス</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バルサルタン</td>
<td>ディオパン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗不整脈薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アミオダロン</td>
<td>アンカロン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>キニジン</td>
<td>硫酸キニジン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ジゴキシン</td>
<td>ジゴシン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ジソピラミド</td>
<td>リスモダム</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フレカイニド</td>
<td>ダンポコール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>プロパフェノン</td>
<td>プロノン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メキシレチン</td>
<td>メキシチール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リドカイン塩酸塩 (全身性)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベプリジル</td>
<td>ベプリコール</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

循環器薬・その他

シルデナフィル
クエン酸塩 (肺高血圧症を適応とする場合)レバチオ

タダラフィル (肺高血圧症を適応とする場合)アドシルカ
<table>
<thead>
<tr>
<th>症状群</th>
<th>薬剤名</th>
<th>主な商品名</th>
<th>TVR</th>
<th>SMV</th>
<th>VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>循環器薬・その他（続）</td>
<td>ボセンタン水和物</td>
<td>トラクリア</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ウルファリンカリウム</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中枢神経系薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗てんかん薬</td>
<td>カルバマゼピン</td>
<td>テグレトール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>フェニトイン</td>
<td>アレビアチン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>フェノバルビタール</td>
<td>フェノバール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>睡眠薬・抗不眠薬</td>
<td>トリアゾラム</td>
<td>ハルシオン等</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>アルプラゾラム</td>
<td>ソラナックス</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ソルビン酸塩</td>
<td>マイスリー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>エスリゾニウム</td>
<td>レクサプロ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>トラゾドン塩酸塩</td>
<td>レスリン、デジレル</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>エルゴタミン酒石酸塩</td>
<td>クリアミン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他（続）</td>
<td>ジヒドロエルゴタミンメチル酸塩</td>
<td>ジヒデルゴット等</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ビモジド</td>
<td>オーラップ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>フェンタニル</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ブロナセリン</td>
<td>ロナセン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ミダゾラム</td>
<td>ドルミカム</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>メサドン</td>
<td>メサベイン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>モダフィニル</td>
<td>モディオダール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>免疫抑制薬</td>
<td>シクロスポリン</td>
<td>サンディミュン、ネオラル</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>デキサイドゾン</td>
<td>デカドロン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ブレドニゾロン（全身投与）</td>
<td>デカドロン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>タクロリムス水和物</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>メルブレドニゾロン（全身投与）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>メトトレキサート</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗腫瘍薬</td>
<td>イリノテカン</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>イマチニブ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ミトキサントロン</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ラバチニブ</td>
<td>タイケルブ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>呼吸器系薬</td>
<td>サルメテロールキシナホ酸塩</td>
<td>セレベント</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>デキストロメトールシンナホ酸塩</td>
<td>メジコン等</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ブデソニド</td>
<td>パルミコート</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホルモン系薬</td>
<td>エチニルエストラジオール</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ホルモン系薬（続）

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>主な商品名</th>
<th>TVR</th>
<th>SMV</th>
<th>VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ノルエチステロン</td>
<td>ルナベル、オーソ、シンフェーズ、フリウェル他</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エチニルエストラジオール</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

抗アレルギー薬

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>主な商品名</th>
<th>TVR</th>
<th>SMV</th>
<th>VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>フェキソフェナジン</td>
<td>アレグラ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フルチカゾンプロピオン</td>
<td>フルナーゼ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

その他

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>主な商品名</th>
<th>TVR</th>
<th>SMV</th>
<th>VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>エルゴメトリンマレイン酸塩</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エルトロンポバゲ</td>
<td>レボレード</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バルデナフィル塩酸塩水和物</td>
<td>レビトラ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メチルエルゴメトリンマレイン酸塩</td>
<td>メテルギン等</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シルデナフィルクエン酸塩</td>
<td>(勃起不全を適応とする場合)パイアグラ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>タダラフィル</td>
<td>(勃起不全を適応とする場合)シアリス (前立腺肥大症に伴う排尿障害を適応とする場合)ザルティア</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ミルクシスル（マリアザミ）含有食品</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セイヨウオトギリソウ（St. John’s Wort：セント・ジョンズ・ワート）含有食品</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>グレープフルーツジュース</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
資料3 IFN-free DAA の併用禁忌・併用注意（併用禁忌、併用注意）
(2016年5月現在の各添付文書より。ただし国内未承認薬は省略)

<table>
<thead>
<tr>
<th>業者名</th>
<th>主な商品名</th>
<th>DCV</th>
<th>ASV</th>
<th>SOF</th>
<th>Harvoni (SOF/LDV)</th>
<th>Viekirax (OBV/PTV/r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>医学系薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>制酸剤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水酸化アルミニウム、水酸化マグネシウム等</td>
<td>アルミゲル ミルマグ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2受体拮抗薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ファモチジン</td>
<td>ガスター</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラニチジン</td>
<td>ザンタック</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シメチジン</td>
<td>タガメット</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロキサチジン</td>
<td>アルタット</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニザチジン</td>
<td>アンノン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラフチジン</td>
<td>プロテカジン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シンテックス</td>
<td>プロトカジン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>プロトンポンプ拮抗薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オメプラゾール</td>
<td>オメプラール オメプラゾン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ランソプラゾール</td>
<td>タケブロナ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ボノプラザン</td>
<td>タケキャブ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラベプラゾール</td>
<td>バリエット</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エソメプラゾール</td>
<td>エキシウム</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>代謝系薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>スタチン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アトルバスタチン</td>
<td>リビトール、カデュエット</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シンバスタチン</td>
<td>リバロ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヴィタバスタチン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ブラバスタチン</td>
<td>メバロチン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フルバスタチン</td>
<td>ローコール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロスバスタチン</td>
<td>クレストール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>感染症薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗結核薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リファプチン</td>
<td>キノビン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リファンビシン</td>
<td>アブテシオン、リファシオン、リマクタン等</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗HIV薬 (HIVプロテアーゼ阻害薬)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アタザナビル硫酸塩</td>
<td>レイアタッツ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>インジェナビル硫酸塩エタノール付加物</td>
<td>クリキシバン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>楽剤名</td>
<td>主な商品名</td>
<td>DCV</td>
<td>ASV</td>
<td>SOF</td>
<td>Harvoni（SOF/LDV）</td>
<td>Viekirax（OBV/PTV/）</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>抗 HIV 薬（HIV プロテアーゼ阻害薬）（続）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サキナビルメシル酸塩</td>
<td>インピラーゼ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ダルナビルエタノール付加物</td>
<td>ブリジスタ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネルフィナビルメシル酸塩</td>
<td>ピラセプト</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホスアンブレナビルカルシウム水和物</td>
<td>レキシヴァ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リトナビル含有製剤</td>
<td>ノービア等</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロピナビル/リトナビル</td>
<td>カレトラ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗 HIV 薬（非ヌクレオシド系逆転写酶素阻害薬）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エトラビル</td>
<td>インテレンス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エファビル</td>
<td>ストックリン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネビラビル</td>
<td>ビラミューン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リルピビル</td>
<td>エジュラント</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗 HIV 薬（その他）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コビシスタットを含有する製剤</td>
<td>スタリビルド</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗菌薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エリスロマイシン</td>
<td>エリスロシン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クラリスロマイシン</td>
<td>クラリス、クラリシッド</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗真菌薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イトラコナゾール</td>
<td>イトリゾール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ケトコナゾール</td>
<td>ジフルカン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フルコナゾール</td>
<td>フロリッド</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホスフルコナゾール</td>
<td>プロジフ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリコナゾール</td>
<td>ブイフェンド</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗ウイルス薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>テノホビルジソプロキシフマル酸塩</td>
<td>テノゼット、テリアード、ツルバダ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>テラプレビル</td>
<td>テラピック</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>液剤名</td>
<td>主な商品名</td>
<td>DCV</td>
<td>ASV</td>
<td>SOF</td>
<td>Harvoni (SOF/LDV)</td>
<td>Viekirax (OBV/PTV+)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>アムロジピン</td>
<td>アムロジン、ノルバスク</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アゼルニジピン</td>
<td>カルブロック</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>塩酸ニカルジピン</td>
<td>ニコデール、ベルジピン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニゾルジピン</td>
<td>バイミカード</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニフェジピン</td>
<td>アダラート</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フェロジピン</td>
<td>スプレンジール、ムノパール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ジルチアゼム</td>
<td>ヘルペッサー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベラパミル塩酸塩</td>
<td>ワソラン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アラニジピン</td>
<td>サブレスタ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>塩酸エホニジピン</td>
<td>ランデル</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>塩酸パルニジピン</td>
<td>ヒポカ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>塩酸ベンジピン</td>
<td>コニール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>塩酸マニジピン</td>
<td>カルスロット</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シルニジピン</td>
<td>アテレック</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニトレジピン</td>
<td>バイロテンシン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニルパジピン</td>
<td>ニパジール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アミオダロン</td>
<td>アンカロン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>キニジン</td>
<td>硫酸キニジン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ジゴキシン</td>
<td>ジゴシン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フレカイニド</td>
<td>タンポコール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>プロパフェノン</td>
<td>プロノン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベプリジェル塩酸塩</td>
<td>ベプリコール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シルデナフィルクエン酸塩</td>
<td>(肺高血圧症を適応とする場合)レパチオ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>タダラフィル</td>
<td>(肺高血圧症を適応とする場合)アドシルカ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポセンタン水和物</td>
<td>トラクリア</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リバーロキサバン</td>
<td>イグザレルト</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リオシグアト</td>
<td>アデムパス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>薬剤名</td>
<td>主な商品名</td>
<td>DCV</td>
<td>ASV</td>
<td>SOF</td>
<td>Harvoni (SOF/LDV)</td>
<td>Viekirax (OBV/PTV/+)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>眪薬</td>
<td>他(続)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>プロセミド</td>
<td>ラシックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中枢神経系薬</td>
<td>抗てんかん薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カルバマゼピン</td>
<td>テグレトール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フェニトイン</td>
<td>アレビアチン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フェノバルビタール</td>
<td>フェノバール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>睡眠薬・抗不眠薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トリアゾラム</td>
<td>ハルシオン等</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アルプラゾラム</td>
<td>ソラナックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ジアセバム</td>
<td>セルシオン、ホリゾン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロラゼプ酸ニカルリウム</td>
<td>メンドン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エルゴタミン酒石酸塩</td>
<td>クリアミン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ジヒドロエルゴタミンメシル酸塩</td>
<td>ジヒデルゴット等</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ビモジド</td>
<td>オーラップ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フロナセリン</td>
<td>ロナセリン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ミダゾラム</td>
<td>ドルミカム</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>モダフィニル</td>
<td>モディオデール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エレトリプタン臭化水素酸塩</td>
<td>レルパックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クエンチアピンフマル酸塩</td>
<td>セロクエル</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>免疫抑制薬</td>
<td>シクロスポリン</td>
<td>サンディミュン、ネオーラル</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>デキサメタゾン全身投与</td>
<td>デカドロン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>タクロリムス水和物</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>呼吸器系薬</td>
<td>サルメテロール、キシナホ酸塩</td>
<td>セレベント</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホルモン系</td>
<td>エチニルエストラジオール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>デソゲストレルエチニルエストラジオール</td>
<td>マーベロン、ファボワール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>薬剤名</td>
<td>主な商品名</td>
<td>DCV</td>
<td>ASV</td>
<td>SOF</td>
<td>Harvoni (SOF/LDV)</td>
<td>Viekirax (OBV/PTV+/)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>ホルモン薬（続）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ドロスピレノンエチニルエストラジオール</td>
<td>ヤーズ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ノルエチニルエストラジオール</td>
<td>ルナベル、オーソ、シンフェーズ、フリュエル他</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ノルゲストレルエチニルエストラジオール</td>
<td>プラノバール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レボノルゲストレルエチニルエストラジオール</td>
<td>アンジュ、トリキュラ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗アレルギー薬</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フルチカゾンプロピオン酸エステル</td>
<td>フルナーゼ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エルゴメトリンマレイン酸塩</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バルデナフィル塩酸塩水和物</td>
<td>レピトロ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メチルエルゴメトリンマレイン酸塩</td>
<td>メテルギン等</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シルデナフィルクエン酸塩</td>
<td>(勃起不全を適応とする場合)バイアグラ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>タダラフィル</td>
<td>(勃起不全を適応とする場合)シアリス (前立腺肥大症に伴う排尿障害を適応とする場合)ザルティア</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セイヨウオトギリソウ (St. John’s Wort;セント・ジョーンズ・ワート)含有食品</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>グレープフルーツジュース</td>
<td></td>
<td></td>
<td>*2</td>
<td></td>
<td></td>
<td>*2</td>
</tr>
</tbody>
</table>

*1 アスナプレビル: 抗真菌薬は注射・経口のみ併用禁忌

*2 グレープフルーツジュースは強いCYP3A4 阻害作用を有するため、ダクラタスビル・アスナプレビル併用療法中のグレープフルーツジュース飲用は避けること。
資料4 薬剤耐性変異測定外注委託先

薬剤耐性変異の測定は保険適用外ではあるものの、以下の4社による外注検査が可能である。各施設の検査会社担当者に直接照会されたい。

(1) ビー・エム・エル
BML 社では PCR–Invader 法によって以下の2項目を解析している。
1) HCV NS5 INV 法（依頼コード No.12300）
 NS5A 領域 2か所（Y93, L31）
 L31F/M/V は、定性報告（変異あり、変異なし）
 Y93H は、変異株存在比率を相対定量値（1%未満～99%以上）によって報告。
2) HCV Y93H INV 法（依頼コード No.12216）
 NS5A 領域 Y93H 変異株存在比率を相対定量値（1%未満～99%以上）によって報告。

(2) LSI メディエンス
LSI メディエンス社ではダイレクトシークエンス法により、HCV 薬剤耐性変異解析（項目コード 26137）として NS5A 領域の L31, Y93 の 2か所の HCV 変異を解析。

(3) エス・アール・エル
SRL 社では HCV DCV 耐性変異（L31/Y93）（項目コード 6506-3）として、ダイレクトシークエンス法による NS5A 領域の L31, Y93 の 2か所の HCV 変異、およびサイクリーブ PCR 法による NS5A 領域の Y93H の HCV 変異を解析。
L31, Y93 を野生型 (Y)、変異型 (H)、混在型 (Y/H) 等で報告、同時に NS5A 領域 Y93H 変異株の存在比率を 10%単位で報告。

(4) 保健科学研究所
株式会社保健科学研究所ではダイレクトシークエンス法により、薬剤耐性変異解析（項目コード 7631）として NS5A 領域の L31, Y93 の 2か所の HCV 変異を解析。L31, Y93 について「変異なし」「変異型」「混在型」等で報告。